“…Up to now, photomagnetic processes in Cu(II)-Mo(IV) systems have been considered in terms of two possible mechanisms: metal-to-metal charge transfer (MMCT): paramagnetic Cu II (S = 1/2)⋯Mo IV-LS (S = 0)⋯Cu II (S = 1/2) → ferromagnetic Cu I (S = 0)⋯[Mo V-LS -Cu II ](S total = 1), 27,[29][30][31]33,36,[38][39][40][41]43,44,[46][47][48][49][50][51][52][53][54][55] and a Light-Induced Excited Spin-State Trapping (LIESST) effect on the Mo(IV) centre: paramagnetic Cu II (S = 1/2) ⋯Mo IV-LS (S = 0)⋯Cu II (S = 1/2) → ferromagnetic [Cu II -Mo IV-HS -Cu II ](S total = 2). [27][28][29][31][32][33]35,37,42,45 The latter case may result from the photoinduced formation of an intermediate geometry between the ideal geometries of TDD-8 and SAPR-8 (Fig. 5) 32,35,60 or the photodissociation of the single cyanide leading to a reduction of the coordination number to 7.…”