Chiral enrichment of serine is achieved in experiments that involve formation of serine octamers starting from non-racemic serine solutions. Serine octamers were generated by means of electrospray and sonic spray ionization of aqueous solutions of d(3)-L-serine (108 Da) and D-serine (105 Da) having different molar ratios of enantiomers. A cyclic process involving the formation of chirally-enriched octameric cluster ions and their dissociation, viz. Ser(1) --> Ser(8) --> Ser(1), allows serine monomers to be regenerated with increased enantiomeric excess as shown in two types of experiments: (1) Chiral enrichment in serine was observed in MS/MS/MS experiments in a quadrupole ion trap in which the entire distribution of serine octamers formed from non-racemic solutions was isolated, collisionally activated, and fragmented. Monomeric serine was regenerated with increased enantiomeric excess upon dissociation of octamers when compared with the enantiomeric composition of the original solution. (2) Chiral enrichment was observed in the products of soft-landing of mass-selected protonated serine octamers. These ions were generated by means of electrospray or sonic spray ionization, mass selected, and collected on a gold surface using ion soft-landing. Chiral enrichment of the soft-landed serine was established by redissolving the recovered material and comparing the intensities of protonated molecular ions of d(3)-L-serine and D-serine after APCI-MS analysis. Both of these experiments showed comparable results, suggesting that formation of serine octamers depends only on the enantiomeric composition of the serine solution and that the magnitude of the chiral preference is intrinsic to octamers formed from solutions of given chiral composition.