Chirality generation and transfer is not only of critical importance in resolving the origin of biological homochirality, but also is of great significance for exploring the chirality-related functionalities in nanomaterials and supramolecular systems. Although modulating the ground state chirality in chiral nanomaterials has been widely demonstrated, it remains a big challenge to steer the excited state chirality (circularly polarized luminescence, CPL). Herein, we present a kind of chiral spherical micelles constructed by chiral cationic gemini surfactants, whose surfaces and cavities could co-assemble with hydrophilic and hydrophobic emitters concurrently. Subsequently, the hydrophilic and hydrophobic emitters could be endowed with CPL activity in the aqueous phase. Additionally, the cavities of such micelles can be regarded as the powerful chiral confined space, which could effectively modulate the excited state chirality of dynamic chemical reactions, enabling coloradjustable CPL emission.