We address an important problem in sequence-to-sequence (Seq2Seq) learning referred to as copying, in which certain segments in the input sequence are selectively replicated in the output sequence. A similar phenomenon is observable in human language communication. For example, humans tend to repeat entity names or even long phrases in conversation. The challenge with regard to copying in Seq2Seq is that new machinery is needed to decide when to perform the operation. In this paper, we incorporate copying into neural networkbased Seq2Seq learning and propose a new model called COPYNET with encoderdecoder structure. COPYNET can nicely integrate the regular way of word generation in the decoder with the new copying mechanism which can choose subsequences in the input sequence and put them at proper places in the output sequence. Our empirical study on both synthetic data sets and real world data sets demonstrates the efficacy of COPYNET. For example, COPYNET can outperform regular RNN-based model with remarkable margins on text summarization tasks.
Ultrathin, molecular-sieving membranes have great potential to realize high-flux, high-selectivity mixture separation at low energy cost. Current microporous membranes [pore size < 1 nanometer (nm)], however, are usually relatively thick. With the use of current membrane materials and techniques, it is difficult to prepare microporous membranes thinner than 20 nm without introducing extra defects. Here, we report ultrathin graphene oxide (GO) membranes, with thickness approaching 1.8 nm, prepared by a facile filtration process. These membranes showed mixture separation selectivities as high as 3400 and 900 for H2/CO2 and H2/N2 mixtures, respectively, through selective structural defects on GO.
We propose Neural Responding Machine (NRM), a neural network-based response generator for Short-Text Conversation. NRM takes the general encoderdecoder framework: it formalizes the generation of response as a decoding process based on the latent representation of the input text, while both encoding and decoding are realized with recurrent neural networks (RNN). The NRM is trained with a large amount of one-round conversation data collected from a microblogging service. Empirical study shows that NRM can generate grammatically correct and content-wise appropriate responses to over 75% of the input text, outperforming stateof-the-arts in the same setting, including retrieval-based and SMT-based models.
Attention mechanism has enhanced stateof-the-art Neural Machine Translation (NMT) by jointly learning to align and translate. It tends to ignore past alignment information, however, which often leads to over-translation and under-translation. To address this problem, we propose coverage-based NMT in this paper. We maintain a coverage vector to keep track of the attention history. The coverage vector is fed to the attention model to help adjust future attention, which lets NMT system to consider more about untranslated source words. Experiments show that the proposed approach significantly improves both translation quality and alignment quality over standard attention-based NMT. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.