Language model pre-training, such as BERT, has significantly improved the performances of many natural language processing tasks. However, pre-trained language models are usually computationally expensive, so it is difficult to efficiently execute them on resourcerestricted devices. To accelerate inference and reduce model size while maintaining accuracy, we first propose a novel Transformer distillation method that is specially designed for knowledge distillation (KD) of the Transformer-based models. By leveraging this new KD method, the plenty of knowledge encoded in a large "teacher" BERT can be effectively transferred to a small "student" Tiny-BERT. Then, we introduce a new two-stage learning framework for TinyBERT, which performs Transformer distillation at both the pretraining and task-specific learning stages. This framework ensures that TinyBERT can capture the general-domain as well as the task-specific knowledge in BERT. TinyBERT 41 with 4 layers is empirically effective and achieves more than 96.8% the performance of its teacher BERT BASE on GLUE benchmark, while being 7.5x smaller and 9.4x faster on inference. TinyBERT 4 is also significantly better than 4-layer state-of-the-art baselines on BERT distillation, with only ∼28% parameters and ∼31% inference time of them. Moreover, TinyBERT 6 with 6 layers performs on-par with its teacher BERT BASE .
We propose Neural Responding Machine (NRM), a neural network-based response generator for Short-Text Conversation. NRM takes the general encoderdecoder framework: it formalizes the generation of response as a decoding process based on the latent representation of the input text, while both encoding and decoding are realized with recurrent neural networks (RNN). The NRM is trained with a large amount of one-round conversation data collected from a microblogging service. Empirical study shows that NRM can generate grammatically correct and content-wise appropriate responses to over 75% of the input text, outperforming stateof-the-arts in the same setting, including retrieval-based and SMT-based models.
Language model pre-training, such as BERT, has significantly improved the performances of many natural language processing tasks. However, the pre-trained language models are usually computationally expensive and memory intensive, so it is difficult to effectively execute them on resource-restricted devices. To accelerate inference and reduce model size while maintaining accuracy, we firstly propose a novel Transformer distillation method that is specially designed for knowledge distillation (KD) of the Transformer-based models. By leveraging this new KD method, the plenty of knowledge encoded in a large "teacher" BERT can be well transferred to a small "student" TinyBERT. Moreover, we introduce a new two-stage learning framework for TinyBERT, which performs Transformer distillation at both the pre-training and task-specific learning stages. This framework ensures that TinyBERT can capture the general-domain as well as the task-specific knowledge in BERT. TinyBERT 1 is empirically effective and achieves more than 96% the performance of teacher BERT BASE on GLUE benchmark, while being 7.5x smaller and 9.4x faster on inference. TinyBERT is also significantly better than state-of-the-art baselines on BERT distillation, with only ∼28% parameters and ∼31% inference time of them.
In this paper, we propose multimodal convolutional neural networks (m-CNNs) for matching image and sentence. Our m-CNN provides an end-to-end framework with convolutional architectures to exploit image representation, word composition, and the matching relations between the two modalities. More specifically, it consists of one image CNN encoding the image content, and one matching CNN learning the joint representation of image and sentence. The matching CNN composes words to different semantic fragments and learns the inter-modal relations between image and the composed fragments at different levels, thus fully exploit the matching relations between image and sentence. Experimental results on benchmark databases of bidirectional image and sentence retrieval demonstrate that the proposed m-CNNs can effectively capture the information necessary for image and sentence matching. Specifically, our proposed m-CNNs for bidirectional image and sentence retrieval on Flickr30K and Microsoft COCO databases achieve the state-of-the-art performances.
Automatic generation of paraphrases from a given sentence is an important yet challenging task in natural language processing (NLP). In this paper, we present a deep reinforcement learning approach to paraphrase generation. Specifically, we propose a new framework for the task, which consists of a generator and an evaluator, both of which are learned from data. The generator, built as a sequenceto-sequence learning model, can produce paraphrases given a sentence. The evaluator, constructed as a deep matching model, can judge whether two sentences are paraphrases of each other. The generator is first trained by deep learning and then further fine-tuned by reinforcement learning in which the reward is given by the evaluator. For the learning of the evaluator, we propose two methods based on supervised learning and inverse reinforcement learning respectively, depending on the type of available training data. Experimental results on two datasets demonstrate the proposed models (the generators) can produce more accurate paraphrases and outperform the stateof-the-art methods in paraphrase generation in both automatic evaluation and human evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.