Mucoadhesive gelling systems based on chitosan and chitosan/β-glycerophosphate (β-GP) were developed in order to increase clotrimazole residence time in the vaginal cavity. Ex vivo mucoadhesiveness using porcine vaginal mucosa followed with mechanical, viscoelastic, and swelling properties of prepared hydrogels were evaluated. Drug-free, sterile, unmodified, and β-GP crosslinked chitosan were investigated for the in vitro cytotoxicity in CRL 2616 human vaginal mucosa cells using MTT assay, fluorescent microscopy, and flow cytometry analysis. Chitosan/β-GP hydrogels exhibited pseudoplastic and thixotropic properties. Ionic interaction between β-GP and chitosan improved mechanical properties of hydrogels in terms of hardness, cohesiveness, and compressibility. The hydrogels' ability to interact with porcine vaginal mucosa (measured as force of detachment and work of adhesion) was comparable to those obtained with reference mucoadhesive gel Replens™. Surprisingly, greater mucoadhesive properties were noticed for chitosan/β-GP hydrogels. The cytotoxic effect of unmodified and β-GP crosslinked chitosan was hardly affected by chitosan molecular weight, exhibited mainly through inducing apoptosis, and was found to be significantly lower in the presence of chitosan/β-GP. Furthermore, the higher amount of β-GP was used to crosslink chitosan, the lower cytotoxic effect was observed.