The aim of this study was to evaluate in vivo bone regeneration, mediated by adipose-derived stem cells (ADSCs), induced to differentiate into osteoblasts and carried by a scaffold gel. In the test group, bone regeneration was mediated by ADSCs, induced to differentiate into osteoblasts, and carried by a scaffold gel. In the control group a scaffold without cells was used. The scaffold, consisting of chitosan and glycerol phosphate, was maintained in situ by a cross-linked resorbable membrane. The osteogenic potential of ADSCs was confirmed by osteocalcin assay and Von Kossa staining performed before implantation. Histological assays detected an initial increase in bone formation in the test group compared with the control group. Microcomputed tomography analysis did not show significant differences between the two groups. Both histological and microcomputed tomography analysis were performed on the ex vivo specimens after a follow-up period of 8 weeks. We observed that differentiated ADSCs could increase bone regeneration and that the scaffold used here can be a suitable carrier to entrap and maintain the cells in situ. On the contrary, the membrane used was not functional in isolating the site of the defect from surrounding soft tissues and caused a significant inflammatory reaction.