There is a need to find better strategies to promote wound healing, especially of chronic wounds, which remain a challenge. We found that synovium mesenchymal stem cells (SMSCs) have the ability to strongly promote cell proliferation of fibroblasts; however, they are ineffective at promoting angiogenesis. Using gene overexpression technology, we overexpressed microRNA‐126‐3p (miR‐126‐3p) and transferred the angiogenic ability of endothelial progenitor cells to SMSCs, promoting angiogenesis. We tested a therapeutic strategy involving controlled‐release exosomes derived from miR‐126‐3p‐overexpressing SMSCs combined with chitosan. Our in vitro results showed that exosomes derived from miR‐126‐3p‐overexpressing SMSCs (SMSC‐126‐Exos) stimulated the proliferation of human dermal fibroblasts and human dermal microvascular endothelial cells (HMEC‐1) in a dose‐dependent manner. Furthermore, SMSC‐126‐Exos also promoted migration and tube formation of HMEC‐1. Testing this system in a diabetic rat model, we found that this approach resulted in accelerated re‐epithelialization, activated angiogenesis, and promotion of collagen maturity in vivo. These data provide the first evidence of the potential of SMSC‐126‐Exos in treating cutaneous wounds and indicate that modifying the cells—for example, by gene overexpression—and using the exosomes derived from these modified cells provides a potential drug delivery system and could have infinite possibilities for future therapy. Stem Cells Translational Medicine
2017;6:736–747