The syntheses of a variety of amphiphilic block glycopolymers based on 2‐{[(D‐glucosamin‐2‐N‐yl)carbonyl]oxy}ethyl acrylate and n‐butyl acrylate or methyl methacrylate by single‐electron transfer‐living radical polymerization (SET‐LRP) are described. In a first step, the homopolymerization of unprotected acrylic glycomonomer to obtain well‐controlled glycopolymers is studied. Posterior and based on these studies, di‐ and triblock glycopolymers were synthesized via SET‐LRP of the glycomonomer from different hydrophobic blocks, varying the hydrophilic block lengths. All the copolymers are characterized by nuclear magnetic resonance spectroscopy and GPC. Moreover, their water solution behavior by dynamic light scattering and their capacity of interaction with Concanavalin A lectin by turbidimetry are analyzed. The effect on the block glycopolymers behavior of hydrophobic block nature and the length of glycopolymer segments is evaluated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013
The atom transfer radical polymerization of an unprotected glycomonomer, 2‐{[(D‐glucosamin‐2N‐yl)carbonyl]oxy}ethyl methacrylate (HEMAGl) is firstly reported. Controlled polymerizations were performed with the CuBr/N,N,N′,N′,N′‐pentamethyldiethylene triamine catalytic system with ethyl 2‐bromoisobutyrate and 1,2‐bis(bromoisobutyryloxy) ethane as mono and difunctional initiators in DMF solutions (80% w/w) at 40 and 50 °C, respectively. The polymerization of HEMAGl resulted in a controlled polymerization with linear kinetics, molecular weights which increase with conversion and narrow polydispersity indexes. Mono and difunctional PHEMAGl macroinitiators were used to synthesize the amphiphilic di and triblock glycopolymers with n‐butyl acrylate, verifying their living character. The self‐assembly of these glycopolymers in distilled water and in 0.1M NaCl solutions was studied by dynamic light scattering, showing the role of hydrogen bonds and the hydrophobic parts. In addition, their interaction with Concanavalin A lectin was examined, demonstrating the influence of molecular weight and copolymer composition. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3623–3631, 2010
Corn starch has been modified with naturally occurring compounds, maleic acid (MA) and itaconic acid (IA), by esterification in an aqueous medium catalyzed by NaOH to produce adsorbents for heavy metals removal in water. The ester formation has been confirmed by wide angle x-ray scattering (WAXS), thermogravimetric analysis (TGA), Fourier Transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The effect of the mono and di-substitution with both acids, on the solubility and the swelling capacity of the modified starch have been investigated. The materials modified with maleic acid exhibited high water solubility, fact that made difficult their characterization and thus their application as adsorbents. In contrast, itaconate esters derivatives demonstrated superabsorbent characteristics and a typical polyelectrolyte behavior. Semiester derivative with greater content of carboxylic acid groups underwent the highest water uptake (H 1 ¼ 1292%). Additionally, the capability of the modified starches with itaconic acid to adsorb aqueous metal cations such as Ni 2þ , Zn 2þ , Cd 2þ , and Pb 2þ was investigated and the results were compared with the native corn starch. The modified and native starches exhibited reasonable adsorption capacity for all the cations. It was demonstrated that the native starch does not exhibit selectivity for any of the cations, whereas the itaconate starches remove higher content of Pb 2þ with the lowest hydration radius in comparison with other ions.
Superabsorbent materials based on natural products have been synthesized by free radical oxidation of corn starch using a redox system consisting of potassium permanganate and sodium bisulfite. The resulting oxidized starches were characterized by analyzing the variation of carbonyl and carboxyl contents. The swelling ability of these samples has been determined by gravimetric method in water and in saline solutions. The effect of oxidant concentration and bleaching procedure on the water absorption capacity has been studied. The ability to remove heavy metals in water solution has been tested against Cd2+, Ni2+, Pb2+ and Zn2+ ions, showing higher percentage of remotion for the unbleached oxidized starches, in particular against nickel ions. Copyright © 2014 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.