It is believed that eukaryotes arise from prokaryotes, which means that organelles can form de novo in prokaryotes. Such events, however, had not been observed previously. Here, we report the biogenesis of organelles in the endosymbiotic cyanobacterium TDX16 (prokaryote) that was released from its senescent/necrotic host cell of green alga Haematococcus pluvialis (eukaryote).Microscopic observations showed that organelle biogenesis in TDX16 initiated with cytoplasm compartmentalization, followed by de-compartmentalization, DNA allocation, and re-compartmentalization, as such two composite organelles-the primitive chloroplast and primitive nucleus sequestering minor and major fractions of cellular DNA respectively were formed. Thereafter, the eukaryotic cytoplasmic matrix was built up from the matrix extruded from the primitive nucleus; mitochondria were assembled in and segregated from the primitive chloroplast, whereby the primitive nucleus and primitive chloroplast matured into the nucleus and chloroplast respectively. While mitochondria subsequently turned into double-membraned vacuoles after matrix degradation. Results of pigment analyses, 16S rRNA and genome sequencing revealed that TDX16 is a phycocyanin-containing cyanobacterium resembling Chroococcidiopsis thermalis, which had acquired 9,017,401 bp DNAs with 10,301 genes from its host. Accordingly, we conclude that organelle biogenesis in TDX16 is achieved by hybridizing the acquired eukaryotic DNAs with its own one and expressing the hybrid genome. The formation of organelles in cyanobacterium TDX16 is the first case of organelle biogenesis in prokaryotes observed so far, which sheds an unprecedented light on eukaryotes and their connections with prokaryotes, and thus has broad implications on biology.The transition of cyanobacterium TDX16 cells into green algal cells is the first case of prokaryote-to-eukaryote transition observed so far, which provides the opportunity and platform to solve the puzzle of organelle biogenesis in prokaryotic cells. Hence, this study aims to investigate how and why organelles form in cyanobacterium TDX16.
Materials and Methods
Strain and CultivationPure TDX16 cells were collected from the H. pluvialis cultures, in which all H. pluvialis cells burst and released TDX16 cells [11], and maintained in sterile BG-11 liquid medium [13] at 25˚C, 12 μmol photons m −2 •s −1 in the illumination incubator. Axenic TDX16 was prepared according to the method [14] with some modifications. Briefly, pure TDX16 culture was treated with antibiotics nystatin (100 μg/ml) and cycloheximide (150 μg/ml) for 18 h, then the culture was diluted 10 fold with sterile distilled water and plated onto BG-11 solid medium in petri dishes supplemented (w/v)with glucose (0.5%), peptone (0.3%) and yeast extracts (0.2%). The petri dishes were sealed with parafilm and incubated in an inverted position in the illumination incubator at 25˚C, 12 μmol photons m −2 •s −1 for one month. The colonies (Figure 4) were picked and transferred into autoclaved 250-ml flasks ...