Stroma-filled tubules named stromules are sporadic extensions of plastids. Earlier, photobleaching was used to demonstrate fluorescent protein diffusion between already interconnected plastids and formed the basis for suggesting that all plastids are able to form networks for exchanging macromolecules. However, a critical appraisal of literature shows that this conjecture is not supported by unequivocal experimental evidence. Here, using photoconvertible mEosFP, we created color differences between similar organelles that enabled us to distinguish clearly between organelle fusion and nonfusion events. Individual plastids, despite conveying a strong impression of interactivity and fusion, maintained well-defined boundaries and did not exchange fluorescent proteins. Moreover, the high pleomorphy of etioplasts from dark-grown seedlings, leucoplasts from roots, and assorted plastids in the accumulation and replication of chloroplasts5 (arc5), arc6, and phosphoglucomutase1 mutants of Arabidopsis thaliana suggested that a single plastid unit might be easily mistaken for interconnected plastids. Our observations provide succinct evidence to refute the long-standing dogma of interplastid connectivity. The ability to create and maintain a large number of unique biochemical factories in the form of singular plastids might be a key feature underlying the versatility of green plants as it provides increased internal diversity for them to combat a wide range of environmental fluctuations and stresses.
The mitochondrion is an organelle originating from an endosymbiotic event and playing a role in several fundamental processes such as energy production, metabolite syntheses, and programmed cell death. This organelle is delineated by two membranes whose synthesis requires an extensive exchange of phospholipids with other cellular organelles such as endoplasmic reticulum (ER) and vacuolar membranes in yeast. These transfers of phospholipids are thought to occur by a non-vesicular pathway at contact sites between two closely apposed membranes. In plants, little is known about the biogenesis of mitochondrial membranes. Contact sites between ER and mitochondria are suspected to play a similar role in phospholipid trafficking as in yeast, but this has never been demonstrated. In contrast, it has been shown that plastids are able to transfer lipids to mitochondria during phosphate starvation. However, the proteins involved in such transfer are still unknown. Here, we identified in Arabidopsis thaliana a large lipid-enriched complex called the mitochondrial transmembrane lipoprotein (MTL) complex. The MTL complex contains proteins located in the two mitochondrial membranes and conserved in all eukaryotic cells, such as the TOM complex and AtMic60, a component of the MICOS complex. We demonstrate that AtMic60 contributes to the export of phosphatidylethanolamine from mitochondria and the import of galactoglycerolipids from plastids during phosphate starvation. Furthermore, AtMic60 promotes lipid desorption from membranes, likely as an initial step for lipid transfer, and binds to Tom40, suggesting that AtMic60 could regulate the tethering between the inner and outer membranes of mitochondria.
Highlights d ER-PM proteins form contact sites with distinct ER shape but similar distance d Tricalbins localize to high ER curvature via their membrane domain d Genetic screens link tricalbin function to pathways for cellular lipid distribution d Cryo-ET reveals rod-shaped densities at tricalbin-mediated ER-PM contacts Correspondence kukulski@mrc-lmb.cam.ac.uk In Brief Hoffmann et al. investigate the architecture and function of yeast ER-PM contact sites. They show how bridging proteins, particularly tricalbins, relate to membrane curvature and inter-organelle distance. Genetic screening points to functional overlap between tricalbins and multiple lipid distribution pathways. Cryo-ET visualizes rod-shaped linkers at tricalbin-mediated ER-PM contacts. SUMMARYLipid flow between cellular organelles occurs via membrane contact sites. Extended-synaptotagmins, known as tricalbins in yeast, mediate lipid transfer between the endoplasmic reticulum (ER) and plasma membrane (PM). How these proteins regulate membrane architecture to transport lipids across the aqueous space between bilayers remains unknown. Using correlative microscopy, electron cryo-tomography, and high-throughput genetics, we address the interplay of architecture and function in budding yeast. We find that ER-PM contacts differ in protein composition and membrane morphology, not in intermembrane distance. In situ electron cryo-tomography reveals the molecular organization of tricalbin-mediated contacts, suggesting a structural framework for putative lipid transfer. Genetic analysis uncovers functional overlap with cellular lipid routes, such as maintenance of PM asymmetry. Further redundancies are suggested for individual tricalbin protein domains. We propose a modularity of molecular and structural functions of tricalbins and of their roles within the cellular network of lipid distribution pathways.
Chloroplasts are a characteristic feature of green plants. Mesophyll cells possess the majority of chloroplasts and it is widely believed that, with the exception of guard cells, the epidermal layer in most higher plants does not contain chloroplasts. However, recent observations on have shown a population of chloroplasts in pavement cells that are smaller than mesophyll chloroplasts and have a high stroma to grana ratio. Here, using stable transgenic lines expressing fluorescent proteins targeted to the plastid stroma, plasma membrane, endoplasmic reticulum, tonoplast, nucleus, mitochondria, peroxisomes, F-actin and microtubules, we characterize the spatiotemporal relationships between the pavement cell chloroplasts (PCCs) and their subcellular environment. Observations on the PCCs suggest a source-sink relationship between the epidermal and the mesophyll layers, and experiments with the mutants () and (), which show altered epidermal plastid development, underscored their developmental plasticity. Our findings lay down the foundation for further investigations aimed at understanding the precise role and contributions of PCCs in plant interactions with the environment.
Multi-colored fluorescent proteins targeted to plastids have provided new insights on the dynamic behavior of these organelles and their interactions with other cytoplasmic components and compartments. Sub-plastidic components such as thylakoids, stroma, the inner and outer membranes of the plastid envelope, nucleoids, plastoglobuli, and starch grains have been efficiently highlighted in living plant cells. In addition, stroma filled membrane extensions called stromules have drawn attention to the dynamic nature of the plastid and its interactions with the rest of the cell. Use of dual and triple fluorescent protein combinations has begun to reveal plastid interactions with mitochondria, the nucleus, the endoplasmic reticulum and F-actin and suggests integral roles of plastids in retrograde signaling, cell to cell communication as well as plant-pathogen interactions. While the rapid advances and insights achieved through fluorescent protein based research on plastids are commendable it is necessary to endorse meaningful observations but subject others to closer scrutiny. Here, in order to develop a better and more comprehensive understanding of plastids and their extensions we provide a critical appraisal of recent information that has been acquired using targeted fluorescent protein probes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.