Chlorpyrifos (CPF), an organophosphate widely applied in agriculture and aquaculture, induces oxidative stress due to free-radical generation and changes in the antioxidant defense system. The present study investigated the short-term effect of CPF exposure on the oxidative and antioxidant systems and their recovery responses in metabolically active tissues (gills, hepatopancreas [HP], and leg muscle) of freshwater crab Barytelphusa guerini. Crabs were exposed to a sublethal concentration of CPF (0.07 mg L(-1)) for a total of 8 days (at intervals of 1, 2, 4, and 8 days) in clean water. The following oxidative stress markers were measured: acetylcholinesterase (AChE), butylcholinesterase (BChE), and ATPase; antioxidants i.e., superoxide dismutase (SOD), catalase, and glutathione reductase (GR), lipid peroxidation (LPO), conjugating enzyme glutathione S-transferase (GST), glutathione peroxidase (GPx), and lipid content. CPF exposure led to a significant decrease in the activity of oxidative stress markers as follows: AChE (84 %), BChE (46 %), and gills Na(+)/K(+) ATPase (62 %). At the end of the recovery period, enzyme levels were recovered except in leg muscle. Total lipids and SOD decreased; CAT and LPO levels increased; and GPx, GR, and GST showed tissue-specific activities. Maximum recovery was observed in GPx followed by GR in HP tissue of crab. Nevertheless, these responses apparently grant successful adaptation for survival in a pesticide-extreme environment.