Humanoid robotics hardware and control techniques have advanced rapidly during the last five years. Presently, several companies have announced the commercial availability of various humanoid robot prototypes. In order to improve the autonomy and overall functionality of these robots, reliable sensors, safety mechanisms, and general integrated software tools and techniques are needed. We believe that the development of practical motion planning algorithms and obstacle avoidance software for humanoid robots represents an important enabling technology. This paper gives an overview of some of our recent efforts to develop motion planning methods for humanoid robots for application tasks involving navigation, object grasping and manipulation, footstep placement, and dynamically-stable full-body motions. We show experimental results obtained by implementations running within a simulation environment as well as on actual humanoid robot hardware.