1971
DOI: 10.1007/bf01404129
|View full text |Cite
|
Sign up to set email alerts
|

Choquetsimplexe und nukleare R�ume

Abstract: Es wird gezeigt, dab man nukleare Riiume mit Hilfe von Choquetsimplexen charakterisieren kann. Ein separierter lokalkonvexer Raum E ist dann und nur dann nuklear, wenn im dualen Raum E' jede gleichstetige Menge in einem gleichstetigen schwach* kompakten Choquetsimplex enthalten ist. Fiir einen F-oder vollst~indigen DF-Raum E folgt, dab E dann und nur dann nuklear ist, wenn jede beschr~inkte Menge in einem beschr~inkten Choquetsimplex enthalten ist.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
4
0

Year Published

1973
1973
1980
1980

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(4 citation statements)
references
References 7 publications
0
4
0
Order By: Relevance
“…It continues the work of Lazar, Retherford[4] and Wittstock[10].1. It continues the work of Lazar, Retherford[4] and Wittstock[10].1.…”
mentioning
confidence: 62%
“…It continues the work of Lazar, Retherford[4] and Wittstock[10].1. It continues the work of Lazar, Retherford[4] and Wittstock[10].1.…”
mentioning
confidence: 62%
“…Some results in this direction have been obtained by Gerd Wittstock (see [3]). Some results in this direction have been obtained by Gerd Wittstock (see [3]).…”
Section: Compact Convex Sets and Compact Choquet Simplexesmentioning
confidence: 86%
“…Gerd Wittstock has proved that a separated locally convex space is nuclear if and only if every equicontinuous set in the dual space is contained in a equicontinuous weakly compact Choquet simplex (see [3]). Suppose now that every compact set in the Fr6chet space E is contained in a compact Choquet simplex.…”
Section: Lemma Any Compact Set K C_ E Is Contained In the Closed Conmentioning
confidence: 99%
“…Appreciable use was made here of the tensor products of ordered linear spaces [406,[415][416][417]. Wittstock [491] used tensor products to describe nuclear spaces in terms of the properties of simplexes (see also [331]).…”
Section: {Pea*:p~o} P~(a)={pgp(a):[]p][~mentioning
confidence: 99%