Heavy metal contamination of soil is an alarming environmental dilemma all over the world. With increasing industrialization, timely development of low-cost and eco-friendly remedial techniques for heavy metal-contaminated soil is needed. Phytoremediation is an emerging technique to remove heavy metals from contaminated soil for environmental sustainability. In the present study, ryegrass was used for phytoextraction of lead and cadmium from contaminated soil in a pot experiment. To enhance the bioavailability of heavy metals, cow dung was acidified by amending with elemental sulfur and molasses and also bioaugmented with an SS-16 sulfur-oxidizing strain to boost biological sulfur oxidation and, hence, four chemically different organic products were prepared. The pot experiment was conducted for a period of 60 days under Pb- and Cd-spiked soil for growing ryegrass with the application of a 10% slurry of each acidified organic product. A significant increase in root and shoot fresh mass as well as Pb and Cd accumulation in the root and shoot of the ryegrass was recorded. As compared to the control and the acidified organic product, P4 was the most effective product overall. Bioconcentration and translocation factors of ryegrass for Pb and Cd were also calculated. At the same time, acidified cow dung slurry (10%) also improved the antioxidative defense mechanism of ryegrass. The results suggest that acidified organic products could be effective for phytoextraction of lead and cadmium from contaminated soil, and in the future acidified cow dung slurry can be used to restore heavy metal-polluted soils in an environmentally sustainable way.