Lactoferrin is a multifunctional protein of the transferrin family, which can be found in the human and other mammals milk. On the basis of many biological functions of lactoferrin, researchers have considered various possibilities of its application in health care, in the prevention and treatment of infectious and inflammatory diseases. However, lactoferrin is exposed to pepsin degradation in the gastrointestinal tract, decreasing its bioactivity after oral administration. In this regard, appropriate delivery system of lactoferrin, which ensures its delivery intact to the receptors in the small intestine requires. In this study, the different compositions of the capsules in combination with tannic acid, formed mainly by hydrogen and hydrophobic interactions were showed. Its stability toward acidic conditions (0.1 M HCl) was investigated. Complexes with polyelectrolytes (and its pairs): PSS/PAH, Parg as the first adsorbed layer on CaCO3 particles formed by electrostatic interactions were presented. As the results, the adsorption of these polyelectrolytes led to greater stability of the obtained capsules. Bovine serum albumin and tannic acid, in particular with the use of poly-L-arginine as the first layer, increasing the stability of the obtained microspheres were selected as the most promising materials for the microcapsules synthesis. The changes in the morphology of [BSA/TA] and Parg [BSA/TA] capsules depending on the various number of bilayers (from 3 to 6) were analyzes. The thickness of capsule was increased on 1-2 nm by applying each subsequent layer. It was noted BSA/TA capsules looked thinner than Parg [BSA/TA] capsules with the same number of bilayers.