There is increasing appreciation that sex differences are not limited to reproductive organs or traits related to reproduction and that sex is an important biological variable in most characteristics of a living organism. The biological process of aging and aging-related traits are no exception and exhibit numerous, often major, sex differences. This article explores one aspect of these differences, namely sex differences in the responses to anti-aging interventions. Aging can be slowed down and/or postponed by a variety of environmental (“lifestyle”), genetic or pharmacological interventions. Although many, particularly older studies utilized only one sex of experimental animals, there is considerable evidence that responses to these interventions can be very different in females and males. Calorie restriction (CR), that is reducing food intake without malnutrition can extend longevity in both sexes, but specific metabolic alterations and health benefits induced by CR are not the same in women and men. In laboratory mice, several of the genetic alterations that reduce insulin-like growth factor I (IGF-1) signaling extend longevity more effectively in females or in females only. Beneficial effects of rapamycin, an inhibitor of mTOR signaling, on mouse longevity are greater in females. In contrast, several anti-aging compounds, including a weak estrogen, 17 alpha estradiol, extend longevity of male, but not female, mice. Apparently, fundamental mechanisms of aging are not identical in females and males and it is essential to use both sexes in studies aimed at identifying novel anti-aging interventions. Recommendations for lifestyle modifications, drugs, and dietary supplements to maintain good health and functionality into advanced age and to live longer will likely need to be tailored to the sex of the user.