The effects of lifelong, moderate excess release of glutamate (Glu) in the CNS have not been previously characterized. We created a transgenic (Tg) mouse model of lifelong excess synaptic Glu release in the CNS by introducing the gene for glutamate dehydrogenase 1 (Glud1) under the control of the neuron-specific enolase promoter. Glud1 is, potentially, an important enzyme in the pathway of Glu synthesis in nerve terminals. Increased levels of GLUD protein and activity in CNS neurons of hemizygous Tg mice were associated with increases in the in vivo release of Glu after neuronal depolarization in striatum and in the frequency and amplitude of miniature EPSCs in the CA1 region of the hippocampus. Despite overexpression of Glud1 in all neurons of the CNS, the Tg mice suffered neuronal losses in select brain regions (e.g., the CA1 but not the CA3 region). In vulnerable regions, Tg mice had decreases in MAP2A labeling of dendrites and in synaptophysin labeling of presynaptic terminals; the decreases in neuronal numbers and dendrite and presynaptic terminal labeling increased with advancing age. In addition, the Tg mice exhibited decreases in long-term potentiation of synaptic activity and in spine density in dendrites of CA1 neurons. Behaviorally, the Tg mice were significantly more resistant than wild-type mice to induction and duration of anesthesia produced by anesthetics that suppress Glu neurotransmission. The Glud1 mouse might be a useful model for the effects of lifelong excess synaptic Glu release on CNS neurons and for age-associated neurodegenerative processes.
L-Glutamate (Glu) is the main excitatory neurotransmitter in the mammalian central nervous system, and it is involved in most aspects of normal brain function, including cognition, memory and learning, plasticity, and motor movement. Although microdialysis techniques have been used to study Glu, the slow temporal resolution of the technique may be inadequate to properly examine tonic and phasic Glu. Thus, our laboratory has developed an enzyme-based microelectrode array (MEA) with fast response time and low detection limits for Glu. We have modified the MEA design to allow for reliable measures in the brain of awake, freely moving mice. In this study, we chronically implanted the MEA in prefrontal cortex (PFC) or striatum (Str) of awake, freely moving C57BL/6 mice. We successfully measured Glu levels 7 days postimplantation without loss of MEA sensitivity. In addition, we determined resting (tonic) Glu levels to be 3.3 M in the PFC and 5.0 M in the Str. Resting Glu levels were subjected to pharmacological manipulation with tetrodotoxin (TTX) and DL-threo--hydroxyaspartate (THA). TTX significantly (p Ͻ 0.05) decreased resting Glu by 20%, whereas THA significantly (p Ͻ 0.05) increased resting Glu by 60%. Taken together, our data show that chronic recordings of tonic and phasic clearance of exogenously applied Glu can be carried out in awake mice for at least 7 days in vivo, allowing for longer term studies of Glu regulation.
J. Neurochem. (2010) 115, 1608–1620.
Abstract
Glutamate in the prefrontal cortex (PFC) plays a significant role in several mental illnesses, including schizophrenia, addiction and anxiety. Previous studies on PFC glutamate‐mediated function have used techniques that raise questions on the neuronal versus astrocytic origin of glutamate. The present studies used enzyme‐based microelectrode arrays to monitor second‐by‐second resting glutamate levels in the PFC of awake rats. Locally applied drugs were employed in an attempt to discriminate between the neuronal or glial components of the resting glutamate signal. Local application of tetrodotoxin (sodium channel blocker), produced a significant (∼40%) decline in resting glutamate levels. In addition significant reductions in extracellular glutamate were seen with locally applied ω‐conotoxin (MVIIC; ∼50%; calcium channel blocker), and the mGluR2/3 agonist, LY379268 (∼20%), and a significant increase with the mGluR2/3 antagonist LY341495 (∼40%), effects all consistent with a large neuronal contribution to the resting glutamate levels. Local administration of D,L‐threo‐β‐benzyloxyaspartate (glutamate transporter inhibitor) produced an ∼120% increase in extracellular glutamate levels, supporting that excitatory amino acid transporters, which are largely located on glia, modulate clearance of extracellular glutamate. Interestingly, local application of (S)‐4‐carboxyphenylglycine (cystine/glutamate antiporter inhibitor), produced small, non‐significant bi‐phasic changes in extracellular glutamate versus vehicle control. Finally, pre‐administration of tetrodotoxin completely blocked the glutamate response to tail pinch stress. Taken together, these results support that PFC resting glutamate levels in rats as measured by the microelectrode array technology are at least 40–50% derived from neurons. Furthermore, these data support that the impulse flow‐dependent glutamate release from a physiologically ‐evoked event is entirely neuronally derived.
Chronic implantation of neurotransmitter measuring devices is essential for awake, behavioral studies occurring over multiple days. Little is known regarding the effects of long term implantation on surrounding brain parenchyma and the resulting alterations in the functional properties of this tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.