The effects of lifelong, moderate excess release of glutamate (Glu) in the CNS have not been previously characterized. We created a transgenic (Tg) mouse model of lifelong excess synaptic Glu release in the CNS by introducing the gene for glutamate dehydrogenase 1 (Glud1) under the control of the neuron-specific enolase promoter. Glud1 is, potentially, an important enzyme in the pathway of Glu synthesis in nerve terminals. Increased levels of GLUD protein and activity in CNS neurons of hemizygous Tg mice were associated with increases in the in vivo release of Glu after neuronal depolarization in striatum and in the frequency and amplitude of miniature EPSCs in the CA1 region of the hippocampus. Despite overexpression of Glud1 in all neurons of the CNS, the Tg mice suffered neuronal losses in select brain regions (e.g., the CA1 but not the CA3 region). In vulnerable regions, Tg mice had decreases in MAP2A labeling of dendrites and in synaptophysin labeling of presynaptic terminals; the decreases in neuronal numbers and dendrite and presynaptic terminal labeling increased with advancing age. In addition, the Tg mice exhibited decreases in long-term potentiation of synaptic activity and in spine density in dendrites of CA1 neurons. Behaviorally, the Tg mice were significantly more resistant than wild-type mice to induction and duration of anesthesia produced by anesthetics that suppress Glu neurotransmission. The Glud1 mouse might be a useful model for the effects of lifelong excess synaptic Glu release on CNS neurons and for age-associated neurodegenerative processes.
BackgroundOxidative stress (OS) is an important factor in brain aging and neurodegenerative diseases. Certain neurons in different brain regions exhibit selective vulnerability to OS. Currently little is known about the underlying mechanisms of this selective neuronal vulnerability. The purpose of this study was to identify endogenous factors that predispose vulnerable neurons to OS by employing genomic and biochemical approaches.ResultsIn this report, using in vitro neuronal cultures, ex vivo organotypic brain slice cultures and acute brain slice preparations, we established that cerebellar granule (CbG) and hippocampal CA1 neurons were significantly more sensitive to OS (induced by paraquat) than cerebral cortical and hippocampal CA3 neurons. To probe for intrinsic differences between in vivo vulnerable (CA1 and CbG) and resistant (CA3 and cerebral cortex) neurons under basal conditions, these neurons were collected by laser capture microdissection from freshly excised brain sections (no OS treatment), and then subjected to oligonucleotide microarray analysis. GeneChip-based transcriptomic analyses revealed that vulnerable neurons had higher expression of genes related to stress and immune response, and lower expression of energy generation and signal transduction genes in comparison with resistant neurons. Subsequent targeted biochemical analyses confirmed the lower energy levels (in the form of ATP) in primary CbG neurons compared with cortical neurons.ConclusionLow energy reserves and high intrinsic stress levels are two underlying factors for neuronal selective vulnerability to OS. These mechanisms can be targeted in the future for the protection of vulnerable neurons.
One of the posttranslational modifications to proteins is methionine oxidation, which is readily reversible by the methionine sulfoxide reductase (Msr) system. Thus, accumulation of faulty proteins due to a compromised Msr system may lead to the development of aging-associated diseases like neurodegenerative diseases. In particular, it was interesting to monitor the consequential effects of methionine oxidation in relation to markers that are associated with Alzheimer's disease as methionine oxidation was implied to play a role in beta-amyloid toxicity. In this study, a knockout mouse strain of the methionine sulfoxide reductase A gene (MsrA ( -/- )) caused an enhanced neurodegeneration in brain hippocampus relative to its wild-type control mouse brain. Additionally, a loss of astrocytes integrity, elevated levels of beta-amyloid deposition, and tau phosphorylation were dominant in various regions of the MsrA ( -/- ) hippocampus but not in the wild-type. Also, a comparison between cultured brain slices of the hippocampal region of both mouse strains showed more sensitivity of the MsrA ( -/- ) cultured cells to H(2)O(2) treatment. It is suggested that a deficiency in MsrA activity fosters oxidative-stress that is manifested by the accumulation of faulty proteins (via methionine oxidation), deposition of aggregated proteins, and premature brain cell death.
Neurons in the hippocampal CA1 region are particularly sensitive to oxidative stress (OS), whereas those in CA3 are resistant. To uncover mechanisms for selective CA1 vulnerability to OS, we treated organotypic hippocampal slices with duroquinone and compared transcriptional profiles of CA1 vs CA3 cells at various intervals. Gene Ontology and Biological Pathway analyses of differentially expressed genes showed that at all time points, CA1 had higher transcriptional activity for stress/inflammatory response, transition metal transport, ferroxidase, and presynaptic signaling activity, while CA3 had higher GABA-signaling, postsynaptic, and calcium and potassium channel activity. Real-time PCR and immunoblots confirmed the transcriptome data and the induction of OS by duroquinone in both hippocampal regions. Our functional genomics approach has identified in CA1 cells molecular pathways as well as unique genes, such as guanosine deaminase, lipocalin 2, synaptotagmin 4, and latrophilin 2, whose time-dependent induction following the initiation of OS may represent attempts at neurite outgrowth, synaptic recovery, and resistance against OS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.