Althea (Hibiscus syriacus) is a shrub prized for its winterhardiness and colorful summer flowers. Altheas are tetraploids (2n = 4x = 80); however, breeders have developed hexaploids and octoploids. Previous studies report anatomical variation among polyploids, including stomata size. The purpose of this study was 4-fold. First, identify genome size and ploidy variation in cultivars via flow cytometry and chromosome counts. Second, create a ploidy series consisting of 4x, 5x, 6x, and 8x cytotypes. Third, investigate the ploidy series for variation in stomatal guard cell lengths, stomatal density, and copy number of fluorescent ribosomal DNA (rDNA) signals. Fourth, investigate segregation patterns of rDNA signals in a subset of pentaploid seedlings. Flow cytometry revealed most cultivars to be tetraploid with holoploid 2C genome sizes from 4.55 ± 0.02 to 4.78 ± 0.06 pg. Five taxa (‘Aphrodite’, ‘Pink Giant’, ‘Minerva’, Azurri Satin®, and Raspberry Smoothie™) were hexaploids (6.68 ± 0.13 to 7.05 ± 0.18 pg). Peppermint Smoothie™ was a cytochimera with tetraploid cells (4.61 ± 0.06 pg) and octoploid cells (8.98 ± 0.13 pg). To create pentaploids, reciprocal combinations were made between hexaploid ‘Pink Giant’ and tetraploid cultivars. To create octoploids, seedlings were treated with agar solutions containing 0.2% colchicine or 125 μM oryzalin. Guard cell lengths were significantly different among the four cytotypes: 4x (27.36 ± 0.04 μm), 5x (30.35 ± 1.28 μm), 6x (35.59 ± 0.63 μm), and 8x (40.48 ± 1.05 μm). Measurements of stomatal density revealed a precipitous decline in average density from the 4x cytotype (398.22 ± 15.43 stomata/mm2) to 5x cytotype (194.06 ± 38.69 stomata/mm2) but no significant difference among 5x, 6x, and 8x cytotypes. Fluorescent in situ hybridization (FISH) revealed an increase in 5S and 45S rDNA signals that scaled with ploidy: 4x (two 5S + four 45S), 6x (three 5S + six 45S), and 8x (four 5S + eight 45S). However, pentaploid (5x) seedlings exhibited random segregation of rDNA signals between the 4x and 6x cytotypes, including all six possible combinations (two 5S, three 5S) × (four 45S, five 45S, six 45S).