Programmed cell death (PCD) during tapetum degeneration in postmeiotic anthers is critical for the proper development of male gametophytes in flowering plants. Although several genes involved in this process have been identified recently, the molecular mechanism is still poorly understood. Here, we show that knockout of rice (Oryza sativa) APOPTOSIS INHIBITOR5 (API5), which encodes a putative homolog of antiapoptosis protein Api5 in animals, results in delayed degeneration of the tapetum due to inhibition of the tapetal PCD process leading to defects in formation of male gametophytes. Os API5 is a nuclear protein that interacts with two DEAD-box ATP-dependent RNA helicases, API5-INTERACTING PROTEIN1 (AIP1) and AIP2. AIP1 and AIP2 are homologs of yeast (Saccharomyces cerevisiae) Suppressor of Bad Response to Refrigeration1 protein 2 (SUB2p) that have critical roles in transcription elongation and pre-mRNA splicing. Os AIP1 and AIP2 can form dimers and interact directly with the promoter region of CP1, a rice cysteine protease gene. Suppression of Os AIP1/2 leads to downregulation of CP1, resulting in sterility, which is highly similar to the effects of suppressed expression of Os CP1. Our results uncover a previously unknown pathway for regulating PCD during tapetum degeneration in rice, one that may be conserved among eukaryotic organisms.
Summary Rice tiller angle determines plant growth density and further contributes grain production. Although a few genes have been characterized to regulate tiller angle in rice, the molecular mechanism underlying the control of tiller angle via microRNA is poorly understood. Here, we report that rice tiller angle is controlled by OsmiR167a‐targeted auxin response factors OsARF12, OsARF17 and OsARF25. In the overexpression of OsMIR167a plants, the expression of OsARF12, OsARF17 and OsARF25 was severely repressed and displayed larger tiller angle as well as the osarf12/osarf17 and osarf12/ osarf25 plants. In addition, those plants showed compromised abnormal auxin distribution and less sensitive to gravity. We also demonstrate that OsARF12, OsARF17 and OsARF25 function redundantly and might be involved in HSFA2D and LAZY1‐dependent asymmetric auxin distribution pathway to control rice tiller angle. Our results reveal that OsmiR167a represses its targets, OsARF12, OsARF17 and OsARF25, to control rice tiller angle by fine‐tuning auxin asymmetric distribution in shoots.
The psbA (encoding D1 protein) plays an important role in protecting photosystem II (PSII) from oxidative damage in higher plants. In our previous study, the role of the psbA from maize (Zea mays. L) in response to SO2 stress was characterized. To date, information about the involvement of the psbA gene in drought response is scarce. Here we found that overexpression (OE) of ZmpsbA showed increased D1 protein abundance and enhanced drought stress tolerance in tobacco. The drought-tolerant phenotypes of the OE lines were accompanied by increases of key antioxidant enzymes SOD, CAT, and POD activities, but decreases of hydrogen peroxide, malondialdehyde, and ion leakage. Further investigation showed that the OE plants had much less reductions than the wild-type in the net photosynthesis rate (Pn), stomatal conductance (Gs), and the maximal photochemical efficiency of PSII (Fv/Fm) during drought stress; indicating that OE of ZmpsbA may alleviate photosynthesis inhibition during drought. qRT-PCR analysis revealed that there was significantly increased expression of NtLEA5, NtERD10C, NtAREB, and NtCDPK2 in ZmpsbA-OE lines. Together, our results indicate that ZmpsbA improves drought tolerance in tobacco possibly by alleviating photosynthesis reduction, reducing reactive oxygen species accumulation and membrane damage, and modulating stress defense gene expression. ZmpsbA could be exploited for engineering drought-tolerant plants in molecular breeding of crops.
Cotton is a pioneer of saline land crop, while salt stress still causes its growth inhibition and fiber production decrease. Phenotype identification showed better salt tolerance of a wild diploid cotton species Gossypium klotzschianum. To elucidate the salt-tolerant mechanisms in G. klotzschianum, we firstly detected the changes in hormones, H2O2 and glutathione (GSSH and GSH), then investigated the gene expression pattern of roots and leaves treated with 300 mM NaCl for 0, 3, 12, 48 h, and each time control by RNA-seq on the Illumina-Solexa platform. Physiological determination proved that the significant increase in hormone ABA at 48 h, while that in H2O2 was at 12 h, likewise, the GSH content decrease at 48 h and the GSSH content increase at 48 h, under salt stress. In total, 37,278 unigenes were identified from the transcriptome data, 8,312 and 6,732 differentially expressed genes (DEGs) were discovered to be involved in salt stress tolerance in roots and leaves, respectively. Gene function annotation and expression analysis elucidated hormone biosynthesis and signal transduction, reactive oxygen species (ROS), and salt overly sensitive (SOS) signal transduction related genes revealed the important roles of them in signal transmission, oxidation balance and ion homeostasis in response to salinity stress. This is a report which focuses on primary response to highly salty stress (upto 300 mM NaCl) in cotton using a wild diploid Gossypium species, broadening our understanding of the salt tolerance mechanism in cotton and laying a solid foundation of salt resistant for the genetic improvement of upland cotton with the resistance to salt stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.