Systemic lupus erythematosus (SLE), the prototypic systemic autoimmune disease, is a debilitating multisystem autoimmune disorder characterized by chronic inflammation and extensive immune dysregulation in multiple organ systems, resulting in significant morbidity and mortality. Here, we present a multidisciplinary approach resulting in the identification of neutrophil cytosolic factor 2 (NCF2) as an important risk factor for SLE and the detailed characterization of its causal variant. We show that NCF2 is strongly associated with increased SLE risk in two independent populations: childhood-onset SLE and adult-onset SLE. The association between NCF2 and SLE can be attributed to a single nonsynonymous coding mutation in exon 12, the effect of which is the substitution of histidine-389 with glutamine (H389Q) in the PB1 domain of the NCF2 protein, with glutamine being the risk allele. Computational modeling suggests that the NCF2 H389Q mutation reduces the binding efficiency of NCF2 with the guanine nucleotide exchange factor Vav1. The model predicts that NCF2/H389 residue interacts with Vav1 residues E509, N510, E556, and G559 in the ZF domain of Vav1. Furthermore, replacing H389 with Q results in 1.5 kcal/ mol weaker binding. To examine the effect of the NCF2 H389Q mutation on NADPH oxidase function, site-specific mutations at the 389 position in NCF2 were tested. Results show that an H389Q mutation causes a twofold decrease in reactive oxygen species production induced by the activation of the Vav-dependent Fcγ receptor-elicited NADPH oxidase activity. Our study completes the chain of evidence from genetic association to specific molecular function.F ine localization of the polymorphisms responsible for genotype-phenotype correlations is emerging as a difficult hurdle in the implementation and interpretation of genetic association studies. Candidate gene studies and, more recently, genome-wide association studies (GWAS), have begun to elucidate the complex genetic profile of systemic lupus erythematosus (SLE) with identification of ∼30 risk loci (1-3). However, for almost all these identified loci, the causal polymorphism that leads to lupus susceptibility has not been discovered. GWAS have been praised for representing an "agnostic" approach that is unbiased by prior assumptions regarding genetic association with the disease. However, such an approach typically ignores all valuable prior information collected over decades about the pathogenesis and genetic basis of diseases that have been previously studied. This inevitably leads to the inclusion of regions (and additional SNPs) that have little to no possibility of being associated with a disease, increasing the number of tests. More tests mean a more stringent multiple testing correction and a reduction of power or a greater number of subjects to overcome the reduction of power. To avoid this reduction of power, we have developed a two-step bioinformatics-driven design that increases the power of gene association studies using a partial Bayesian approach. The...