This study evaluated the effects of metformin on orthodontic tooth movement in a rat model of type 2 diabetes mellitus. Rats were fed a high-fat diet for 4 weeks to induce fat accumulation and insulin resistance, and then injected with a low dose of streptozotocin (35 mg/kg) intraperitoneally to induce type 2 diabetes. An orthodontic appliance was placed in normoglycemic, type 2 diabetes, and type 2 diabetes with metformin-administrated rats. After 14 days, type 2 diabetes rats exhibited greater orthodontic tooth movement and had a higher number of tartrate-resistant acid phosphatase-positive osteoclasts, stronger cathepsin K expression, and weaker alkaline phosphatase immunostaining than normoglycemic rats. Metformin administration resulted in normalization of osteoclast numbers, cathepsin K immunostaining, and of tooth movement as well as partly recovery of alkaline phosphatase expression in diabetic rats. Metformin also reduced sclerostin expression and improved the immunolocalization of dentin matrix protein 1 in osteocytes of type 2 diabetes rats. These results suggest that metformin administration reversed the adverse effects of diabetes on orthodontic tooth movement.