Pulmonary hypertension is a highly prevalent complication of sickle cell disease and is a strong risk factor for early mortality. However, the pathophysiologic mechanisms leading to pulmonary vasculopathy remain unclear. Transgenic mice provide opportunities for mechanistic studies of vascular pathophysiology in an animal model. By microcardiac catheterization, all mice expressing exclusively human sickle hemoglobin had pulmonary hypertension, profound pulmonary and systemic endothelial dysfunction, and vascular instability characterized by diminished responses to authentic nitric oxide (NO), NO donors, and endothelium-dependent vasodilators and enhanced responses to vasoconstrictors. However, endothelium-independent vasodilation in sickle mice was normal. Mechanisms of vasculopathy in sickle mice involve global dysregulation of the NO axis: impaired constitutive nitric oxide synthase activity (NOS) with loss of endothelial NOS (eNOS) dimerization, increased NO scavenging by plasma hemoglobin and superoxide, increased arginase activity, and depleted intravascular nitrite reserves. Light microscopy and computed tomography revealed no plexogenic arterial remodeling or thrombi/ emboli. Transplanting sickle marrow into wild-type mice conferred the same phenotype, and similar pathobiology was observed in a nonsickle mouse model of acute alloimmune hemolysis. Although the time course is shorter than typical pulmonary hypertension in human sickle cell disease, these results demonstrate that hemolytic anemia is sufficient to produce endothelial dysfunction and global dysregulation of NO.
IntroductionPulmonary hypertension is a highly prevalent complication of sickle cell disease that is associated with early mortality. [1][2][3][4] The putative mechanisms responsible for pulmonary hypertension are the focus of intense current research and remain incompletely defined. 5 One mechanism proposed is that hemolytic anemia and decompartmentalization of erythrocyte hemoglobin and arginase into plasma leads to nitric oxide (NO) scavenging and arginine degradation, limiting the bioavailability of NO. 3,[6][7][8][9][10] This process would ultimately lead to acute changes in pulmonary vascular endothelial and vasomotor function and chronic pathologic intimal and smooth muscle hyperplasia. Alternatively, chronic lung disease caused by recurrent pulmonary infarction, pneumonia, acute chest syndrome, and thromboembolism could lead to chronic hypoxemia, pulmonary fibrosis, thrombotic vascular obliteration, and secondary pulmonary hypertension. [11][12][13][14][15] Pulmonary hypertension could also arise from chronic hypoxia or chronic nocturnal hypoxia. [16][17][18] Additional factors contributing to pulmonary hypertension include right-heart failure secondary to a chronic high cardiac output as compensation for chronic anemia and left ventricular diastolic dysfunction secondary to cardiac tissue microinfarction and/or iron overload. [19][20][21][22] In short, is exposure to hemoglobin S (HbS) erythrocytes sufficient to cause pulmonar...