Two phosphorescent Ir(III) complexes bearing a mesoionic carbene ligand based on 1,2,3-triazolylidene are obtained for the first time. A silver-iridium transmetalation of the in situ-generated mesoionic carbene affords the cationic dichloro complex [Ir(trizpy)2Cl2](+) (3, trizpy = 1-benzyl-3-methyl-4-(pyridin-2-yl)-1H-1,2,3-triazolylidene) that reacts with a bis-tetrazolate (b-trz) dianionic ligand to give [Ir(trizpy)2(b-trz)](+) (5). The new compounds are fully characterized by NMR spectroscopy and mass spectrometry, and the X-ray structure of 3 is determined. The electrochemical behavior is somewhat different compared to most standard cationic iridium complexes. The first oxidation process is shifted to substantially higher potential in both 3 and 5, due to peculiar and different ligand-induced effects in the two cases, which stabilize the highest occupied molecular orbital; reduction processes are centered on the mesoionic carbene ligands. Both compounds exhibit a mostly ligand-centered luminescence band in the blue-green spectral region, substantially stronger in the case of 5 versus 3, both in CH3CN solution and in poly(methyl methacrylate) matrix at room temperature. Optimized geometries, orbital energies, spin densities, and electronic transitions are determined via density functional theory calculations, which support a full rationalization of the electrochemical and photophysical behavior. This work paves the way for the development of Ir-based emitters with neutral mesoionic carbene ligands and anionic ancillary ligands, a new concept in the area of cationic Ir(III) complexes.