This paper presents a characteristic evaluation of commercial gallium nitride (GaN) transistors having two different gate-lengths of 0.4-μm and 0.25-μm in the design of a class-S power amplifier (PA). Class-S PA is operated by a random pulse-width input signal from band-pass delta-sigma modulation and has to deal with harmonics that consider quantization noise. Although a transistor having a short gate-length has an advantage of efficient operation at higher frequency for harmonics of the pulse signal, several problems can arise, such as the cost and export license of a 0.25-μm transistor. The possibility of using a 0.4-μm transistor on a class-S PA at 955 MHz is evaluated by comparing the frequency characteristics of GaN transistors having two different gate-lengths and extracting the intrinsic parameters as a shape of the simplified switch-based model. In addition, the effectiveness of the switch model is evaluated by currentmode class-D (CMCD) simulation. Finally, device characteristics are compared in terms of current-mode class-S PA. The analyses of the CMCD PA reveal that although the efficiency of 0.4-μm transistor decreases more as the operating frequency increases from 955 MHz to 3,500 MHz due to the efficiency limitation at the higher frequency region, it shows similar power and efficiency of 41.6 dBm and 49%, respectively, at 955 MHz when compared to the 0.25-μm transistor.Key Words: Cass-S amplifier, Current-Mode Amplifier, Gallium Nitride (GaN), Gate-Length, Switch-Mode Amplifier. This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ⓒ