Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
We study positive solutions to steady-state reaction–diffusion models of the form $$ \textstyle\begin{cases} -\Delta u=\lambda f(v);\quad\Omega, \\ -\Delta v=\lambda g(u);\quad\Omega, \\ \frac{\partial u}{\partial \eta }+\sqrt{\lambda } u=0;\quad \partial \Omega, \\ \frac{\partial v}{\partial \eta }+\sqrt{\lambda }v=0; \quad\partial \Omega, \end{cases} $$ { − Δ u = λ f ( v ) ; Ω , − Δ v = λ g ( u ) ; Ω , ∂ u ∂ η + λ u = 0 ; ∂ Ω , ∂ v ∂ η + λ v = 0 ; ∂ Ω , where $\lambda >0$ λ > 0 is a positive parameter, Ω is a bounded domain in $\mathbb{R}^{N}$ R N $(N > 1)$ ( N > 1 ) with smooth boundary ∂Ω, or $\Omega =(0,1)$ Ω = ( 0 , 1 ) , $\frac{\partial z}{\partial \eta }$ ∂ z ∂ η is the outward normal derivative of z. We assume that f and g are continuous increasing functions such that $f(0) = 0 = g(0)$ f ( 0 ) = 0 = g ( 0 ) and $\lim_{s \rightarrow \infty } \frac{f(Mg(s))}{s} = 0$ lim s → ∞ f ( M g ( s ) ) s = 0 for all $M>0$ M > 0 . In particular, we extend the results for the single equation case discussed in (Fonseka et al. in J. Math. Anal. Appl. 476(2):480-494, 2019) to the above system.
We study positive solutions to steady-state reaction–diffusion models of the form $$ \textstyle\begin{cases} -\Delta u=\lambda f(v);\quad\Omega, \\ -\Delta v=\lambda g(u);\quad\Omega, \\ \frac{\partial u}{\partial \eta }+\sqrt{\lambda } u=0;\quad \partial \Omega, \\ \frac{\partial v}{\partial \eta }+\sqrt{\lambda }v=0; \quad\partial \Omega, \end{cases} $$ { − Δ u = λ f ( v ) ; Ω , − Δ v = λ g ( u ) ; Ω , ∂ u ∂ η + λ u = 0 ; ∂ Ω , ∂ v ∂ η + λ v = 0 ; ∂ Ω , where $\lambda >0$ λ > 0 is a positive parameter, Ω is a bounded domain in $\mathbb{R}^{N}$ R N $(N > 1)$ ( N > 1 ) with smooth boundary ∂Ω, or $\Omega =(0,1)$ Ω = ( 0 , 1 ) , $\frac{\partial z}{\partial \eta }$ ∂ z ∂ η is the outward normal derivative of z. We assume that f and g are continuous increasing functions such that $f(0) = 0 = g(0)$ f ( 0 ) = 0 = g ( 0 ) and $\lim_{s \rightarrow \infty } \frac{f(Mg(s))}{s} = 0$ lim s → ∞ f ( M g ( s ) ) s = 0 for all $M>0$ M > 0 . In particular, we extend the results for the single equation case discussed in (Fonseka et al. in J. Math. Anal. Appl. 476(2):480-494, 2019) to the above system.
<p style='text-indent:20px;'>We study positive solutions to classes of steady state reaction diffusion systems of the form:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \left\lbrace \begin{matrix}-\Delta u = \lambda f(v) ;\; \Omega\\ -\Delta v = \lambda g(u) ;\; \Omega\\ \frac{\partial u}{\partial \eta}+\sqrt{\lambda} u = 0; \; \partial \Omega\\ \frac{\partial v}{\partial \eta}+\sqrt{\lambda}v = 0; \; \partial \Omega\ \end{matrix} \right. \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M2">\begin{document}$ \lambda>0 $\end{document}</tex-math></inline-formula> is a positive parameter, <inline-formula><tex-math id="M3">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a bounded domain in <inline-formula><tex-math id="M4">\begin{document}$ \mathbb{R}^N $\end{document}</tex-math></inline-formula>; <inline-formula><tex-math id="M5">\begin{document}$ N > 1 $\end{document}</tex-math></inline-formula> with smooth boundary <inline-formula><tex-math id="M6">\begin{document}$ \partial \Omega $\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id="M7">\begin{document}$ \Omega = (0, 1) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M8">\begin{document}$ \frac{\partial z}{\partial \eta} $\end{document}</tex-math></inline-formula> is the outward normal derivative of <inline-formula><tex-math id="M9">\begin{document}$ z $\end{document}</tex-math></inline-formula>. Here <inline-formula><tex-math id="M10">\begin{document}$ f, g \in C^2[0, r) \cap C[0, \infty) $\end{document}</tex-math></inline-formula> for some <inline-formula><tex-math id="M11">\begin{document}$ r>0 $\end{document}</tex-math></inline-formula>. Further, we assume that <inline-formula><tex-math id="M12">\begin{document}$ f $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M13">\begin{document}$ g $\end{document}</tex-math></inline-formula> are increasing functions such that <inline-formula><tex-math id="M14">\begin{document}$ f(0) = 0 = g(0) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M15">\begin{document}$ f'(0) = g'(0) = 1 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M16">\begin{document}$ f''(0)>0, g''(0)>0 $\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id="M17">\begin{document}$ \lim\limits_{s \rightarrow \infty} \frac{f(Mg(s))}{s} = 0 $\end{document}</tex-math></inline-formula> for all <inline-formula><tex-math id="M18">\begin{document}$ M>0 $\end{document}</tex-math></inline-formula>. Under certain additional assumptions on <inline-formula><tex-math id="M19">\begin{document}$ f $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M20">\begin{document}$ g $\end{document}</tex-math></inline-formula> we prove that the bifurcation diagram for positive solutions of this system is at least <inline-formula><tex-math id="M21">\begin{document}$ \Sigma- $\end{document}</tex-math></inline-formula>shaped. We also discuss an example where <inline-formula><tex-math id="M22">\begin{document}$ f $\end{document}</tex-math></inline-formula> is sublinear at <inline-formula><tex-math id="M23">\begin{document}$ \infty $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M24">\begin{document}$ g $\end{document}</tex-math></inline-formula> is superlinear at <inline-formula><tex-math id="M25">\begin{document}$ \infty $\end{document}</tex-math></inline-formula> which satisfy our hypotheses.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.