We study the positive steady state distributions and dynamical behavior of reaction-diffusion equation with weak allele effect type growth, in which the growth rate per capita is not monotonic as in logistic type, and the habitat is assumed to be a heterogeneous bounded region. The existence of multiple steady states is shown, and the global bifurcation diagrams are obtained. Results are applied to a reaction-diffusion model with type II functional response, and also a model with density-dependent diffusion of animal aggregation.
Abstract. We consider a reaction-diffusion equation which models the constant yield harvesting to a spatially heterogeneous population which satisfies a logistic growth. We prove the existence, uniqueness and stability of the maximal steady state solutions under certain conditions, and we also classify all steady state solutions under more restricted conditions. Exact global bifurcation diagrams are obtained in the latter case. Our method is a combination of comparison arguments and bifurcation theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.