2021
DOI: 10.20944/preprints202108.0222.v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Classical and Bayesian Estimation of Two-Parameter Power Function Distribution

Abstract: The power function distribution is a flexible waiting time model that may provide better fit for some failure data. This paper presents the comparison of the maximum likelihood estimates and the Bayes estimates of two-parameter power function distribution. The Bayes estimates are obtained, using conjugate priors, under five loss functions consist of square error, precautionary, weighted, LINEX and DeGroot loss function. The Gibbs sampling algorithm is proposed to generate samples from posterior distributions a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?