Modern automatic speaker verification relies largely on deep neural networks (DNNs) trained on mel-frequency cepstral coefficient (MFCC) features. While there are alternative feature extraction methods based on phase, prosody and long-term temporal operations, they have not been extensively studied with DNN-based methods. We aim to fill this gap by providing extensive re-assessment of 14 feature extractors on VoxCeleb and SITW datasets. Our findings reveal that features equipped with techniques such as spectral centroids, group delay function, and integrated noise suppression provide promising alternatives to MFCCs for deep speaker embeddings extraction. Experimental results demonstrate up to 16.3% (VoxCeleb) and 25.1% (SITW) relative decrease in equal error rate (EER) to the baseline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.