2019 Scientific Meeting on Electrical-Electronics &Amp; Biomedical Engineering and Computer Science (EBBT) 2019
DOI: 10.1109/ebbt.2019.8742051
|View full text |Cite
|
Sign up to set email alerts
|

Classification and Diagnosis of Myopathy EMG Signals Using the Continuous Wavelet Transform

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
8
0
3

Year Published

2019
2019
2023
2023

Publication Types

Select...
5
4

Relationship

1
8

Authors

Journals

citations
Cited by 21 publications
(11 citation statements)
references
References 14 publications
0
8
0
3
Order By: Relevance
“…Various features have been utilized as input for different ML algorithms, resulting in variable performance outcomes, 42,43 as can be seen in Table S1. 34,35,39,[42][43][44][45][46][47][48][49][50][51][52][53][54][55][56][57][58][59] The classification performance varied when distinguishing between normal and myopathic, normal and neuropathic, or myopathic and neuropathic conditions. For instance, TD and FD techniques with K-nearest neighbors as a classifier, can achieve 100% accuracy in a small dataset differentiating ALS from normal, but only 66% accuracy in differentiating myopathy from normal.…”
Section: Emg Signal Classificationmentioning
confidence: 99%
“…Various features have been utilized as input for different ML algorithms, resulting in variable performance outcomes, 42,43 as can be seen in Table S1. 34,35,39,[42][43][44][45][46][47][48][49][50][51][52][53][54][55][56][57][58][59] The classification performance varied when distinguishing between normal and myopathic, normal and neuropathic, or myopathic and neuropathic conditions. For instance, TD and FD techniques with K-nearest neighbors as a classifier, can achieve 100% accuracy in a small dataset differentiating ALS from normal, but only 66% accuracy in differentiating myopathy from normal.…”
Section: Emg Signal Classificationmentioning
confidence: 99%
“…Exemplos mais recentes sobre a aplicação de wavelets na detecção da condição de um motor de indução podem ser encontrados em (DEHINA et al, 2018;GARVANOV et al, 2019;BELKHOU et al, 2019). Onde: Para a transformada Wavelet discreta (DWT), a ideia principal é a mesma do caso da transformada contínua (CWT).…”
Section: Análise Por Transformada De Waveletunclassified
“…Son olarak, önerilen yaklaşımın performansını incelemek için bir k -NN sınıflandırıcısı kullanılmıştır. Belkhou vd., miyopati ve normal EMG sinyallerinin sınıflandırılmasını hedeflemişlerdir [8]. Bu hedef doğrultusunda EMG sinyallerine sürekli dalgacık dönüşümü ile dört istatistiksel öznitelik belirlenmiştir.…”
Section: Introductionunclassified