The Neoproterozoic rocks of the Eastern Desert (ED) of Egypt represent the northwestern part of the Arabian-Nubian Shield (ANS), which was formed during the Pan-African orogenic cycle (950-450). Geochemistry of the different rock units has clarified their compositional variations, tectonic settings, and origins. The ages of these rock units were reported to predict the crustal evolution of the ANS. Island arc volcanic rocks and ophiolitic sequences formed between 700 and 800 Ma, and then, they were obducted in the earlier stage of the Pan-African orogeny. The post-collision stage was characterized by the emplacement of large masses of Dokhan volcanics (610-560 Ma) and shallow level A-type granites (610-550 Ma). Neoproterozoic ophiolites fall geochemically and tectonically into two separate groups: MORB-like ophiolites and SSZ ophiolites of fore-arc tectonic setting. Intra-oceanic island arcs and related inter-arc volcaniclastic sediments are followed by the incorporations of ophiolite fragments into the volcaniclastic matrix to form "ophiolitic mélange" through tectonic and/or concurrent sedimentary and tectonic processes. The "gneissic domes" that are metamorphic core complexes were previously interpreted to represent a pre-Neoproterozoic. However, recent age data argued that the ED gneissic rocks are juvenile in origin and Neoproterozoic. Granitoid rocks in the ED include older and younger types. Most of the older granitoids are of I-type character, displaying metaluminous, calcalkaline geochemical characteristics plot in the area of volcanic arc granites (VAG), whereas most of the younger granitoids are mainly alkaline of A-type granites and of within-plate tectonic setting (WPG). Nonmetamorphosed Dokhan volcanics and Hammamat molasse sediments formed during the final post-collisional phases.