2021
DOI: 10.20895/infotel.v13i2.637
|View full text |Cite
|
Sign up to set email alerts
|

Classification Based on Configuration Objects by Using Procrustes Analysis

Abstract: Classification is one of the data mining topics that will predict an object to go into a certain group. The prediction process can be performed by using similarity measures, classification trees, or regression. On the other hand, Procrustes refers to a technique of matching two configurations that have been implemented for outlier detection. Based on the result, Procrustes has a potential to tackle the misclassification problem when the outliers are assumed as the misclassified object. Therefore, the Procruste… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2023
2023
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 18 publications
0
1
0
1
Order By: Relevance
“…The KNN algorithm is popular enough in Machine Learning. And also, its classification process is based on the proximities of the object using their configuration [29].…”
Section: Feature Selection Validitymentioning
confidence: 99%
“…The KNN algorithm is popular enough in Machine Learning. And also, its classification process is based on the proximities of the object using their configuration [29].…”
Section: Feature Selection Validitymentioning
confidence: 99%
“…F. Klasifikasi Klasifikasi adalah salah satu topik data mining yang paling populer untuk mencari informasi dan banyak digunakan untuk menentukan suatu keputusan dengan pengetahuan baru yang diperoleh dari pengolahan data masa lalu menggunakan suatu algoritma (Ananda & Prasetiadi, 2021;Handayani & Ikrimach, 2020;Nuklianggraita et al, 2020) Pada penelitian ini, proses klasifikasi dilakukan dengan menggunakan cross-validation untuk membagi dataset menjadi dua set yaitu data training dan data testing serta menerapkan metode klasifikasi KNN.…”
Section: C) Varianceunclassified