2017
DOI: 10.30630/joiv.1.4-2.64
|View full text |Cite
|
Sign up to set email alerts
|

Classification of Alcohol Consumption among Secondary School Students

Abstract: Abstract-In 2016, the National Institute of Health reported that 26% of 8th graders, 47% of 10th graders, and 64% of 12th graders have all had experience in consuming alcoholic drinks. This finding indicates an accelerating trend in alcohol use among school students, hence a growing concerns among the public. To address this issue, this paper is set to model the alcohol consumption data among the secondary school students and attempt to predict the alcohol consumption behaviors among them. A set of classificat… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
2
0
2

Year Published

2018
2018
2024
2024

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 9 publications
(4 citation statements)
references
References 7 publications
0
2
0
2
Order By: Relevance
“…Data pre-processing is important since the dataset contains noisy, inconsistent, missing, and outdated values [46]. Data pre-processing is vital prior to dataset classification to improve data quality by identifying and removing noisy data.…”
Section: 2data Pre-processingmentioning
confidence: 99%
“…Data pre-processing is important since the dataset contains noisy, inconsistent, missing, and outdated values [46]. Data pre-processing is vital prior to dataset classification to improve data quality by identifying and removing noisy data.…”
Section: 2data Pre-processingmentioning
confidence: 99%
“…Penelitian tentang konsumsi alkohol pada siswa telah dilakukan dengan beberapa algoritma data mining di antaranya penelitian yang dilakukan oleh Palaniappan [6], model klasifikasi yang dikembangkan dengan menggunakan algoritma AutoMLP mencapai akurasi lebih tinggi yakni 64,54% jika dibandingkan dengan Artificial Neural Networks (ANN) hanya 61,78%. Fabio et al, menerapkan teknik klasifikasi dan clustering untuk prediksi konsumsi alkohol dengan membuat segmentasi data menggunakan K-Means dan teknik data mining seperti Decision Tree, SVM, Bayesian Network, dan KNN.…”
Section: Pendahuluanunclassified
“…Setelah tahapan data-cleaning selesai dan diasumsikan bahwa atribut sudah dapat diakses sebagai kolom, tranformasi data dilakukan, di antaranya atribut konsumsi alkohol di hari kerja (Dalc), konsumsi alkohol di akhir pekan (Walc), jumlah ketidakhadiran (Absence), dan nilai periode pertama sampai periode ketiga(G1-G3). Kemudian, target atribut (Alc) dirumuskan menggunakan persamaan (6) [6]. Selanjutnya, atribut "Absence" dimodifikasikan ke dalam nilai biner, di mana absence dirumuskan dengan persamaan (7) dan dengan mengasumsikan bahwa semakin tinggi jumlah ketidakhadiran maka semakin tinggi obsesi untuk meminum alkohol.…”
Section: Gambar 1 Metodologi Yang Diusulkanunclassified
“…After processing the identification pattern of E-nose scent sensors using the backpropagation ANN method [9], [10], the types of coffee identified are Robusta and Arabica [11]. The backpropagation ANN method classifies the color levels of roasted coffee beans with an accuracy value of up to 97.5% [12].…”
Section: Introductionmentioning
confidence: 99%