Data mining melakukan proses ekstraksi pengetahuan yang diperoleh dari sekumpulan data dalam jumlah besar. Penelitian ini bertujuan untuk menerapkan dan melakukan analisis kinerja algoritma data mining untuk memprediksi konsumsi alkohol dan menganalisis faktor-faktor yang terkait pada siswa tingkat menengah. Adapun tahapan yang dilakukan ialah pra-proses data, seleksi fitur, klasifikasi, dan evaluasi model. Pada tahap praproses, beberapa fitur diubah menjadi bentuk yang sesuai untuk memudahkan proses klasifikasi. Selanjutnya, algoritma Gain Ratio dan Feature Correlation-Based Filter (FCBF) digunakan untuk memilih fitur-fitur yang relevan dan penting untuk digunakan dalam tahapan klasifikasi. Decision Tree C5.0, Support Vector Machine (SVM), K-Nearest Neighbor (KNN), dan Naive Bayes (NB) dieksekusi pada kelompok fitur yang terpilih. Akurasi model yang dibangun dievaluasi menggunakan 10-fold Cross-Validation (CV). Hasil penelitian menunjukkan bahwa model klasifikasi yang dibangun menggunakan Naïve Bayes memiliki nilai akurasi tertinggi dengan menggunakan 5 fitur terbaik dari Gain Ratio. Selain itu, penggunaan metode pemilihan fitur mampu meningkatkan performa dari seluruh klasifier secara umum. Pengujian lebih lanjut pada data yang sama maupun berbeda perlu dilakukan untuk mendapatkan gambaran lebih mendalam mengenai kinerja algoritma-algoritma yang digunakan.
Cervical cancer becomes a major cause of cancer deaths in women around the world. The objective of this study is to provide a comprehensive analysis of different data mining methods to diagnose the malignant cancer samples. Different data mining algorithms (SVM, Naïve Bayes, and KNN) has been applied on four different medical tests (Biopsy, Cytology, Hinselmann, and Schiller) as four different target variables. The attributes influence the disease most is extracted since the disease has no symptoms in the early stage. The extraction involved over 32 attributes and two different algorithms such as Correlation-based Filter (CFS) and Random Forest. The results showed that the performance of Naïve Bayes classifier outperforms other classifiers after evaluation using 10-fold cross-validation method in R environment. In addition, the use of attribute selection has been proved not only can select the highly important attributes but also to increase the performance of all classifiers on cervical cancer dataset. In this study, the work reveals the classifiers can effectively achieve the best performance with the least number of highly important attributes.
Sepeda motor merupakan salah satu kendaraan yang paling digemari oleh masyarakat Indonesia. Pabrikan terus menawarkan sepeda motor dengan keunggulan yang beragam mulai dari kapasitas penyimpanan, jenis desain dan fitur-fitur unggulan lainnya dikarenakan banyaknya peminat dan permintaan dari masyarakat. Inovasi produk yang diluncurkan oleh pabrikan memberikan kesulitan bagi konsumen dalam menentukan sepeda motor yang akan dibeli. Setiap konsumen memiliki preferensi yang berbeda dalam memilih kendaraan., seperti fitur, model atau desain, harga dan tempat penyimpanan (bagasi/storage). Penelitian ini difokuskan untuk membangun sistem pendukung keputusan pemilihan sepeda motor matik. Metode Promethee adalah metode outranking yang diterapkan untuk memberikan hasil perangkingan dari alternatif yang ada sesuai dengan preferensi - preferensi terbaik. Hasil penelitian menunjukkan bahwa SPK yang dibangun dengan menggunakan metode promethee dapat membantu mempermudah dalam menentukan jenis motor matik yang sesuai dengan preferensi konsumen
Personal disorder is a type of mental illness. People with personal disorder cannot respond changes and demands of life in normal ways. Women with type B personal disorder tend to have high risk of violence. It is important to make early detection of this personal disorder, so that it can be anticipated properly. This paper reports an architecture model of back propagation neural network (BPPN) for early detection of type B personal disorder. The back propagation process divided into two phases, training and testing. The training process used 43 data and the testing process used 34 data. The output classified into 4 diagnosis categories of type B personal disorder, namely: anti-social, borderline, histrionic, and narcissistic. The optimal parameters of BPPN model consist of maximum epoch of 1000, maximum mu of 10000000000, increase mu of 25, decrease mu of 0.1, and neuron hidden layer of 25. The MSE of training is 3.07E-14 and MSE of testing is 1.00E-03. The accuracy of training is 90.7%, while the accuracy of testing is 97.2%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.