2018
DOI: 10.1155/2018/1312787
|View full text |Cite
|
Sign up to set email alerts
|

Classification of Asphalt Pavement Cracks Using Laplacian Pyramid-Based Image Processing and a Hybrid Computational Approach

Abstract: To improve the efficiency of the periodic surveys of the asphalt pavement condition, this study puts forward an intelligent method for automating the classification of pavement crack patterns. The new approach relies on image processing techniques and computational intelligence algorithms. The image processing techniques of Laplacian pyramid and projection integral are employed to extract numerical features from digital images. Least squares support vector machine (LSSVM) and Differential Flower Pollination (D… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
7
0
1

Year Published

2019
2019
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 11 publications
(8 citation statements)
references
References 58 publications
0
7
0
1
Order By: Relevance
“…To carry out a performance analysis of our proposal, we have used the five datasets generated from the previous section and employed the classification algorithms detailed in Section 4. In addition, in order to compare results, we have used the data reduction methods of Section 3 and the proposal of Cubero-Fernandez et al ( 2017), Hoang (2018), and Rodriguez-Lozano et al ( 2020) under the name "PP" on the same datasets. However, to set a fair comparison of our proposal with the methods presented in Section 3 and PP, all images in each dataset are set to the same resolution: 640 × 480.…”
Section: Classification Performance Analysismentioning
confidence: 99%
See 2 more Smart Citations
“…To carry out a performance analysis of our proposal, we have used the five datasets generated from the previous section and employed the classification algorithms detailed in Section 4. In addition, in order to compare results, we have used the data reduction methods of Section 3 and the proposal of Cubero-Fernandez et al ( 2017), Hoang (2018), and Rodriguez-Lozano et al ( 2020) under the name "PP" on the same datasets. However, to set a fair comparison of our proposal with the methods presented in Section 3 and PP, all images in each dataset are set to the same resolution: 640 × 480.…”
Section: Classification Performance Analysismentioning
confidence: 99%
“…Zhang & Yuen 2021). These proposals range from algorithms based on image enhancement (Hoang, 2018), illumination correction (C. Chen et al, 2021), and edge detection (Cubero-Fernandez et al, 2017) to others based on more sophisticated methods, such as minimal path estimation (Amhaz et al, 2016), shadow removal (Palomar et al, 2010), or even classic machine learning algorithms (Y. Shi et al, 2016).…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Las svm son un método de clasificación donde la idea principal es construir hiperplanos como superficies de decisión, de tal manera que el margen de separación entre los ejemplos positivos y negativos se maximice [65]. Algunas publicaciones, como [19], [21], [23], [25], [43], [35] y [62], muestran que las svm arrojan resultados satisfactorios en la detección de fallas en pavimentos. Dentro de las fortalezas de las svm tenemos que su modelamiento no necesita la totalidad de puntos disponibles del conjunto de entrenamiento para hallar la separación entre clases, lo cual representa una ventaja frente a otros métodos que utilizan un porcentaje alto de las muestras del conjunto de entrenamiento.…”
Section: Máquinas De Soporte Vectorialunclassified
“…In the previous ten years, many scholars have conducted in-depth examinations of road crack recognition primarily based on digital image processing. Hoang [ 1 ] proposed a smart method of automatically classifying road cracks to enhance the effectiveness of periodic surveys of asphalt pavement conditions. The new method depends on algorithms of computational intelligence and methods of image processing.…”
Section: Introductionmentioning
confidence: 99%