The accurate prediction of urban growth is pivotal for managing urbanization, especially in fast-urbanizing countries. For this purpose, cellular automata-based (CA) simulation tools have been widely developed and applied. Previous studies have extensively discussed various model building and calibration techniques to improve simulation performance. However, it has been a common practice that the simulation is conducted at and only at the spatial extent where the results are needed, while as we know, urban development in one place can also be influenced by the situations in the broader contexts. To tackle this gap, in this paper, the impact of the simulation of spatial extent on simulation performance is tested and discussed. We used five villages at the rural–urban fringe in Chengdu, China as the case study. Urban growth CA models are built and trained at the spatial extent of the village and the whole city. Comparisons between the simulation results and the actual urban growth in the study area from 2005 to 2015 show that the accuracy of the city model was 7.33% higher than the village model and the latter had more errors in simulating the growth of small clusters. Our experiment suggests that, at least in some cases, urban growth modeling at a larger spatial extent can yield better results than merely modeling the area of interest, and the impacts of the spatial extent of simulation should be considered by modelers.