The innate RNA sensor RIG-I is critical in the initiation of antiviral type I interferons (IFNs) production upon recognition of "non-self" viral RNAs. Here, we identify a host-derived, IFN-inducible long noncoding RNA, lnc-Lsm3b, that can compete with viral RNAs in the binding of RIG-I monomers and feedback inactivate the RIG-I innate function at late stage of innate response. Mechanistically, binding of lnc-Lsm3b restricts RIG-I protein's conformational shift and prevents downstream signaling, thereby terminating type I IFNs production. Multivalent structural motifs and long-stem structure are critical features of lnc-Lsm3b for RIG-I binding and inhibition. These data reveal a non-canonical self-recognition mode in the regulation of immune response and demonstrate an important role of an inducible "self" lncRNA acting as a potent molecular decoy actively saturating RIG-I binding sites to restrict the duration of "non-self" RNA-induced innate immune response and maintaining immune homeostasis, with potential utility in inflammatory disease management.
Host cell metabolism can be modulated by viral infection, affecting viral survival or clearance. Yet the cellular metabolism rewiring mediated by the N6-methyladenosine (m6A) modification in interactions between virus and host remains largely unknown. Here we report that in response to viral infection, host cells impair the enzymatic activity of the RNA m6A demethylase ALKBH5. This behavior increases the m6A methylation on α-ketoglutarate dehydrogenase (OGDH) messenger RNA (mRNA) to reduce its mRNA stability and protein expression. Reduced OGDH decreases the production of the metabolite itaconate that is required for viral replication. With reduced OGDH and itaconate production in vivo, Alkbh5-deficient mice display innate immune response–independent resistance to viral exposure. Our findings reveal that m6A RNA modification–mediated down-regulation of the OGDH-itaconate pathway reprograms cellular metabolism to inhibit viral replication, proposing potential targets for controlling viral infection.
Given the size of modern cities in the urbanising age, it is beyond the perceptual capacity of most people to develop a good knowledge about the beauty and ugliness of the city at every street corner. Correspondingly, for planners, it is also difficult to accurately answer questions like 'where are the worst-looking places in the city that regeneration should give first consideration', or 'in the fast urbanising cities, how is the city appearance changing', etc. To address this issue, we here present a computer vision method for the large-scale and automatic evaluation of the urban visual environment, by leveraging state-of-the-art machine learning techniques and the wide-coverage street view images. From the various factors that are at work, we choose two key features, the visual quality of street façade and the continuity of street wall, as the starting point of this line of analysis. In order to test the validity of this method, we further compare the machine ratings with ratings collected on site from 752 passers-by on fifty-six locations. We show that the machine learning model can produce a good estimation of people's real visual experience, and it holds much potential for various tasks in terms of urban design evaluation, culture identification, etc.
Long noncoding RNAs (lncRNAs) involved in the regulation of antiviral innate immune responses need to be further identified. By functionally screening the lncRNAs in macrophages, here we identified lncRNA Malat1, abundant in the nucleus but significantly down-regulated after viral infection, as a negative regulator of antiviral type I IFN (IFN-I) production. Malat1 directly bound to the transactive response DNA-binding protein (TDP43) in the nucleus and prevented activation of TDP43 by blocking the activated caspase-3-mediated TDP43 cleavage to TDP35. The cleaved TDP35 increased the nuclear IRF3 protein level by binding and degrading Rbck1 pre-mRNA to prevent IRF3 proteasomal degradation upon viral infection, thus selectively promoting antiviral IFN-I production. Deficiency of Malat1 enhanced antiviral innate responses in vivo, accompanying the increased IFN-I production and reduced viral burden. Importantly, the reduced MALAT1, augmented IRF3, and increased IFNA mRNA were found in peripheral blood mononuclear cells (PBMCs) from systemic lupus erythematosus (SLE) patients. Therefore, the down-regulation of MALAT1 in virus-infected cells or in human cells from autoimmune diseases will increase host resistance against viral infection or lead to autoinflammatory interferonopathies via the increased type I IFN production. Our results demonstrate that the nuclear Malat1 suppresses antiviral innate responses by targeting TDP43 activation via RNA-RBP interactive network, adding insight to the molecular regulation of innate responses and autoimmune pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.