Business model innovation has seen a recent surge in academic research and business practice. Changes to business models are recognized as a fundamental approach to realize innovations for sustainability. However, little is known about the successful adoption of sustainable business models (SBMs). The purpose of this paper is to develop a unified theoretical perspective for understanding business model innovations that lead to better organizational economic, environmental and social performance. The paper examines bodies of literature on business model innovation, sustainability innovation, networks theory, stakeholder theory and product-service systems. We develop five propositions that support the creation of SBMs in a unified perspective, which lays a foundation to support organizations in investigating and experimenting with alternative new business models. This article contributes to the emerging field of SBMs, which embed economic, environmental and social flows of value that are created, delivered and captured in a value network. It highlights gaps for addressing the challenges of business model innovation for sustainability and suggests avenues for future research.
We tested whether multicomponent mixtures of xenoestrogens would produce significant effects when each component was combined at concentrations below its individual NOEC or EC01 level. The estrogenic effects of eight chemicals of environmental relevance, including hydroxylated PCBs, benzophenones, parabenes, bisphenol A, and genistein, were recorded using a recombinant yeast estrogen screen (YES). To ensure that no chemical contributed disproportionately to the overall combination effect, a mixture was prepared at a mixture ratio proportional to the potency of each individual component. The performance of four approaches for the calculation of additive combination effects (concentration addition, toxicity equivalency factors, effect summation, and independent action) was compared. Experimental testing of the predictions revealed that concentration addition and its application, the toxicity equivalency factor approach, were valid methods for the calculation of additive mixture effects. There was excellent agreement between prediction and observation. In contrast, independent action and effect summation led to clear underestimations of the experimentally observed responses. Crucially, there were substantial mixture effects even though each chemical was present at levels well below its NOEC and EC01. We conclude that estrogenic agents are able to act together to produce significant effects when combined at concentrations below their NOECs. Our results highlight the limitations of the traditional focus on the effects of single agents. Hazard assessments that ignore the possibility of joint action of estrogenic chemicals will almost certainly lead to significant underestimations of risk.
Intestinal metaplasia (IM) is part of a stepwise sequence of alterations of the gastric mucosa, leading ultimately to gastric cancer, and is strongly associated with chronic Helicobacter pylori infection. The molecular mechanisms underlying the onset of IM remain elusive. The aim of this study was to assess the putative involvement of two intestine-specific transcription factors, CDX1 and CDX2, in the pathogenesis of gastric IM and gastric carcinoma. Eighteen foci of IM and 46 cases of gastric carcinoma were evaluated by immunohistochemistry for CDX1 and CDX2 expression. CDX1 was expressed in all foci of IM and in 41% of gastric carcinomas; CDX2 was expressed in 17/18 foci of IM and in 54% of gastric carcinomas. In gastric carcinomas, a strong association was observed between the expression of CDX1 and CDX2, as well as between the intestinal mucin MUC2 and CDX1 and CDX2. No association was observed between the expression of CDX1 and CDX2 and the histological type of gastric carcinoma. In conclusion, these results show that aberrant expression of CDX1 and CDX2 is consistently observed in IM and in a subset of gastric carcinomas. The association of CDX1 and CDX2 with expression of the intestinal mucin MUC2, both in IM and in gastric carcinoma, indirectly implies that CDX1 and CDX2 may be involved in intestinal differentiation along the gastric carcinogenesis pathway.
The low potency of many man-made estrogenic chemicals, so-called xenoestrogens, has been used to suggest that risks arising from exposure to individual chemicals are negligible. Another argument used to dismiss concerns of health effects is that endogenous steroidal estrogens are too potent for xenoestrogens to contribute significantly to estrogenic effects. Using a yeast reporter gene assay with the human estrogen receptoralpha, we tested these ideas experimentally by assessing the ability of a combination of 11 xenoestrogens to affect the actions of 17ss-estradiol. Significantly, each xenoestrogen was present at a level well below its no-observed-effect concentration (NOEC). To derive accurate descriptions of low effects, we recorded concentration-response relationships for each xenoestrogen and for 17ss-estradiol. We used these data to predict entire concentration-response curves of mixtures of xenoestrogens with 17ss-estradiol, assuming additive combination effects. Over a large range of concentrations, the experimentally observed responses decisively confirmed the model predictions. The combined additive effect of the 11 xenoestrogens led to a dramatic enhancement of the hormone's action, even when each single agent was present below its NOEC. Our results show that not even sub-NOEC levels of xenoestrogens can be considered to be without effect on potent steroidal estrogens when they act in concert with a large number of similarly acting chemicals. It remains to be seen to what degree these effects can be neutralized by environmental chemicals with antiestrogenic activity. Nevertheless, potential human and wildlife responses induced by additive combination effects of xenoestrogens deserve serious consideration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.