Intestinal metaplasia (IM) is part of a stepwise sequence of alterations of the gastric mucosa, leading ultimately to gastric cancer, and is strongly associated with chronic Helicobacter pylori infection. The molecular mechanisms underlying the onset of IM remain elusive. The aim of this study was to assess the putative involvement of two intestine-specific transcription factors, CDX1 and CDX2, in the pathogenesis of gastric IM and gastric carcinoma. Eighteen foci of IM and 46 cases of gastric carcinoma were evaluated by immunohistochemistry for CDX1 and CDX2 expression. CDX1 was expressed in all foci of IM and in 41% of gastric carcinomas; CDX2 was expressed in 17/18 foci of IM and in 54% of gastric carcinomas. In gastric carcinomas, a strong association was observed between the expression of CDX1 and CDX2, as well as between the intestinal mucin MUC2 and CDX1 and CDX2. No association was observed between the expression of CDX1 and CDX2 and the histological type of gastric carcinoma. In conclusion, these results show that aberrant expression of CDX1 and CDX2 is consistently observed in IM and in a subset of gastric carcinomas. The association of CDX1 and CDX2 with expression of the intestinal mucin MUC2, both in IM and in gastric carcinoma, indirectly implies that CDX1 and CDX2 may be involved in intestinal differentiation along the gastric carcinogenesis pathway.
The Sialyl-Tn antigen (Neu5Ac␣2-6GalNAc-O-Ser/Thr) is highly expressed in several human carcinomas and is associated with carcinoma aggressiveness and poor prognosis. We characterized two human sialyltransferases, CMP-Neu5Ac:GalNAc-R ␣2,6-sialyltransferase (ST6GalNAc)-I and ST6GalNAc-II, that are candidate enzymes for Sialyl-Tn synthases. We expressed soluble recombinant hST6GalNAc-I and hST6GalNAc-II and characterized the substrate specificity of both enzymes toward a panel of glycopeptides, glycoproteins, and other synthetic glycoconjugates. The recombinant ST6GalNAc-I and ST6GalNAc-II showed similar substrate specificity toward glycoproteins and GalNAc␣-O-Ser/Thr glycopeptides, such as glycopeptides derived from the MUC2 mucin and the HIVgp120. We also observed that the amino acid sequence of the acceptor glycopeptide contributes to the in vitro substrate specificity of both enzymes. We additionally established a gastric cell line, MKN45, stably transfected with the full length of either ST6GalNAc-I or ST6GalNAc-II and evaluated the carbohydrate antigens expression profile induced by each enzyme. MKN45 transfected with ST6GalNAc-I showed high expression of Sialyl-Tn, whereas MKN45 transfected with ST6GalNAc-II showed the biosynthesis of the Sialyl-6T structure [Gal1-3 (Neu5Ac␣2-6)GalNAc-O-Ser/Thr].In conclusion, although both enzymes show similar in vitro activities when Tn antigen alone is available, whenever both Tn and T antigens are present, ST6GalNAc-I acts preferentially on Tn antigen, whereas the ST6GalNAc-II acts preferentially on T antigen. Our results show that ST6GalNAc-I is the major Sialyl-Tn synthase and strongly support the hypothesis that the expression of the Sialyl-Tn antigen in cancer cells is due to ST6GalNAc-I activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.