Abstract:The overarching goal of this research was to develop and demonstrate an automated Cropland Classification Algorithm (ACCA) that will rapidly, routinely, and accurately classify agricultural cropland extent, areas, and characteristics (e.g., irrigated vs. rainfed) over large areas such as a country or a region through combination of multi-sensor remote sensing and secondary data. In this research, a rule-based ACCA was conceptualized, developed, and demonstrated for the country of Tajikistan using mega file data cubes (MFDCs) involving data from Landsat Global Land Survey (GLS), Landsat Enhanced Thematic Mapper Plus (ETM+) 30 m, Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m time-series, a suite of secondary data (e.g., elevation, slope, precipitation, temperature), and in situ data. First, the process involved producing an accurate reference (or truth) cropland layer (TCL), consisting of cropland extent, areas, and irrigated vs. rainfed cropland areas, for the entire country of Tajikistan based on MFDC of year 2005 (MFDC2005). The methods involved in producing TCL included using ISOCLASS clustering, Tasseled Cap bi-spectral plots, spectro-temporal characteristics from MODIS 250 m monthly normalized difference vegetation index (NDVI) maximum value composites (MVC) time-series, and textural characteristics of higher resolution imagery. The TCL statistics accurately matched with the national statistics of Tajikistan for irrigated and rainfed croplands, where about 70% of croplands were irrigated and the rest rainfed. Second, a rule-based ACCA was developed to replicate the TCL accurately (80% producer's and user's accuracies or within 20% quantity disagreement involving about 10 million Landsat 30 m sized cropland pixels of Tajikistan). Development of ACCA was an iterative process involving series of rules that are coded, refined, tweaked, and re-coded till ACCA derived OPEN ACCESS Remote Sens. 2012, 4 2891 croplands (ACLs) match accurately with TCLs. Third, the ACCA derived cropland layers of Tajikistan were produced for year 2005 (ACL2005), same year as the year used for developing ACCA, using MFDC2005. Fourth, TCL for year 2010 (TCL2010), an independent year, was produced using MFDC2010 using the same methods and approaches as the one used to produce TCL2005. Fifth, the ACCA was applied on MFDC2010 to derive ACL2010. The ACLs were then compared with TCLs (ACL2005 vs. TCL2005 and ACL2010 vs. TCL2010). The resulting accuracies and errors from error matrices involving about 152 million Landsat (30 m) pixels of the country of Tajikistan (of which about 10 million Landsat size, 30 m, cropland pixels) showed an overall accuracy of 99.6% (k hat = 0.97) for ACL2005 vs. TCL2005. For the 3 classes (irrigated, rainfed, and others) mapped in ACL2005, the producer's accuracy was >86.4% and users accuracy was >93.6%. For ACL2010 vs. TCL2010, the error matrix showed an overall accuracy on 96.2% (k hat = 0.96). For the 3 classes (irrigated, rainfed, and others) mapped in ACL2010, the producer's and user's...