Not only mathematical statistics, differential equations, and mathematical models were used to analyze and reduce data, but a rough set model is also employed in medical, engineering, and other fields to analyze and reduce them. The goal of this paper is to introduce a minimal structure concept to produce new rough set models and show that it is suitable for analyzing most real-life problems, reduction of attributes, and decision making. We examine the effectiveness of the following method in the problem of electric power generators and decision making. We also offer a comparison of our method and Pawlak’s method. Finally, the variable precision model improves the accuracy of decision making.