2022
DOI: 10.1155/2022/2963195
|View full text |Cite
|
Sign up to set email alerts
|

Classifier Adaptation Based on Modified Label Propagation for Unsupervised Domain Adaptation

Abstract: Unsupervised domain adaptation endeavors to learn a desirable classifier for a target domain by transferring knowledge learned from a related (source) domain. Existing approaches focus on deriving domain-invariant feature representations by aligning the domain distributions. However, those works often require an extra classifier. In contrast, this paper proposes a classifier adaptation method based on modified label propagation (CAMLP) for unsupervised domain adaptation. Inspired by pseudolabeling, CAMLP propo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 43 publications
0
0
0
Order By: Relevance