2018
DOI: 10.1007/978-3-319-92058-0_71
|View full text |Cite
|
Sign up to set email alerts
|

Classifying Political Tweets Using Naïve Bayes and Support Vector Machines

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2019
2019
2023
2023

Publication Types

Select...
5
3
1

Relationship

0
9

Authors

Journals

citations
Cited by 13 publications
(4 citation statements)
references
References 13 publications
0
3
0
1
Order By: Relevance
“…Hamoud et al, (Hamoud et al, 2018) have used the Bag of Words (BOW), TF and TF-IDF on the Twitter data for the classification of political tweets. Of the classification algorithms, they have used SVM and NB.…”
Section: Introductionmentioning
confidence: 99%
“…Hamoud et al, (Hamoud et al, 2018) have used the Bag of Words (BOW), TF and TF-IDF on the Twitter data for the classification of political tweets. Of the classification algorithms, they have used SVM and NB.…”
Section: Introductionmentioning
confidence: 99%
“…They used SVM and NB classification algorithms. According to the results, BOW-enabled SVM provides the highest accuracy and F-measure [4]. Symeonidis et al used Linear SVC, Bernoulli NB, Logistic Regression (LR), and CNN, which are four popular ML algorithms.…”
Section: Related Workmentioning
confidence: 99%
“…Como para o trabalho proposto oúnico interesseé saber se um dado ingrediente está ou não contido em uma receita, a DTM será codificada como uma matriz binária. Em seguida, a técnica de TF-IDF [Hamoud et al 2018]é aplicadaà DTM para a obtenção da relevância de cada ingrediente em cada receita [Jayaraman et al 2017], sendo a base de dados final constituída pelas frequências do TF-IDF.…”
Section: Base De Dados Propostaunclassified