2011 IEEE 27th International Conference on Data Engineering Workshops 2011
DOI: 10.1109/icdew.2011.5767662
|View full text |Cite
|
Sign up to set email alerts
|

Classifying Wikipedia entities into fine-grained classes

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0
2

Year Published

2012
2012
2022
2022

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(7 citation statements)
references
References 7 publications
0
5
0
2
Order By: Relevance
“…For different languages, it is difficult to perfectly implement the previous works because language-dependent features and heuristic rules are usually adopted to achieve better classification performance, such as in Japanese [19] and Arabic [20]. In order to evaluate the resulting training set in classification, we re-implemented the state-of-the-art method presented by Tkatchenko et al [17], and their baseline method that is similar to Tardif's classifier [18]. Their baseline method used the text of the first paragraph as a basic feature space, and a range of additional ones, namely, Title, Infobox, Sidebar, and Taxobox tokens, stemmed and tokenized categories, and template names.…”
Section: Resultsmentioning
confidence: 99%
See 2 more Smart Citations
“…For different languages, it is difficult to perfectly implement the previous works because language-dependent features and heuristic rules are usually adopted to achieve better classification performance, such as in Japanese [19] and Arabic [20]. In order to evaluate the resulting training set in classification, we re-implemented the state-of-the-art method presented by Tkatchenko et al [17], and their baseline method that is similar to Tardif's classifier [18]. Their baseline method used the text of the first paragraph as a basic feature space, and a range of additional ones, namely, Title, Infobox, Sidebar, and Taxobox tokens, stemmed and tokenized categories, and template names.…”
Section: Resultsmentioning
confidence: 99%
“…Saleh et al [16] extracted features from abstracts, infobox, category, and persondata structure, and improved the recall of different NE types, by using beta-gamma threshold adjustment. Tkatchenko et al [17] adopted similar features to Tardif et al [18]. They added a 'List of' feature to the bag-of-words (BOW) representation, and added a boolean feature, which is the result of a binary rule, to increase separability between the articles of NEs and non-entities.…”
Section: Related Workmentioning
confidence: 99%
See 1 more Smart Citation
“…También Bollegala [38] realiza estudios sobre la identifi cación de entidades nombradas en microtextos o textos breves que se publican en redes sociales como Twitter y Facebook. Otros estudios como el de Tkatchenko [39] propone un enfoque semi-supervisado para la construcción de conjuntos de entrenamiento para la clasifi cación de entidades nombradas. Para su desarrollo se usó una taxonomía de entidades nombradas llamada BBN [40] , un umbral de al menos 40 artículos de Wikipedia, y un subconjunto de las 400 palabras en minúscula más frecuentes, del corpus Reuters.…”
Section: Entidades Nombradas (Ne)unclassified
“…En 2007, Hirano [51] propone adicionar un mecanismo de aprendizaje supervisado al proceso, el cual mejora en un 4.4% la precisión. En 2011, Tkatchenko [39] propone utilizar un clasifi cador con aprendizaje semi-supervisado basado en SVM para establecer relaciones entre entidades nombradas dentro de Wikipedia. El trabajo ofrece niveles de precisión cercanos a 1 (100%) al aplicar el clasifi cador sobre 18 clases, lo cual es un resultado destacable.…”
Section: Relaciones Entre Entidades Nombradasunclassified