Abstract. Current research efforts in Named Entity Recognition deal mostly with the English language. Even though the interest in multilanguage Information Extraction is growing, there are only few works reporting results for the Russian language. This paper introduces quality baselines for the Russian NER task. We propose a corpus which was manually annotated with organization and person names. The main purpose of this corpus is to provide gold standard for evaluation. We implemented and evaluated two approaches to NER: knowledge-based and statistical. The first one comprises several components: dictionary matching, pattern matching and rule-based search of lexical representations of entity names within a document. We assembled a set of linguistic resources and evaluated their impact on performance. For the data-driven approach we utilized our implementation of a linear-chain CRF which uses a rich set of features. The performance of both systems is promising (62.17% and 75.05% F1 measure), although they do not employ morphological or syntactical analysis.
Abstract-Present day machine learning is computationally intensive and processes large amounts of data. It is implemented in a distributed fashion in order to address these scalability issues. The work is parallelized across a number of computing nodes. It is usually hard to estimate in advance how many nodes to use for a particular workload. We propose a simple framework for estimating the scalability of distributed machine learning algorithms. We measure the scalability by means of the speedup an algorithm achieves with more nodes. We propose time complexity models for gradient descent and graphical model inference. We validate our models with experiments on deep learning training and belief propagation. This framework was used to study the scalability of machine learning algorithms in Apache Spark.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.