It is a commonplace in the philosophy of physics that any local physical theory can be represented using arbitrary coordinates, simply by using tensor calculus.On the other hand, the physics literature often claims that spinors as such cannot be represented in coordinates in a curved space-time. These commonplaces are inconsistent. What general covariance means for theories with fermions, such as electrons, is thus unclear. In fact both commonplaces are wrong. Though it is not widely known, Ogievetsky and Polubarinov constructed spinors in coordinates in 1965, enhancing the unity of physics and helping to spawn particle physicists' concept of nonlinear group representations. Roughly and locally, these spinors resemble the orthonormal basis or "tetrad" formalism in the symmetric gauge, but they are conceptually self-sufficient and more economical. The typical tetrad formalism is de-Ockhamized, with six extra field components and six compensating gauge symmetries to cancel them out. The Ogievetsky-Polubarinov formalism, by contrast, is (nearly) Ockhamized, with most of the fluff removed. As developed * Forthcoming in Studies in History and Philosophy of Modern Physics 1 nonperturbatively by Bilyalov, it admits any coordinates at a point, but "time" must be listed first. Here "time" is defined in terms of an eigenvalue problem involving the metric components and the matrix diag(−1, 1, 1, 1), the product of which must have no negative eigenvalues in order to yield a real symmetric square root that is a function of the metric. Thus even formal general covariance requires reconsideration; the atlas of admissible coordinate charts should be sensitive to the types and values of the fields involved.Apart from coordinate order and the usual spinorial two-valuedness, (densitized) Ogievetsky-Polubarinov spinors form, with the (conformal part of the) met- The surprising mildness of the restrictions on coordinate order as applied to the Schwarzschild solution is exhibited.