Water shortage has become a major challenge in many parts of the world due to climate change and socio-economic development. Allocating water is critical to meet human and ecosystem needs in these regions now and in the future. However, water allocation is being challenged by uncertainties associated with climate change and socio-economic development. This thesis aims to assess the combined effects of climate change and socio-economic development on water supply and demand in the Pearl River Basin (PRB) in China, and identify water allocation plans, which are robust to future climate change and socio-economic development. To do so, the impact of climate change on future water availability is first assessed. Next, different model frameworks are developed to identify robust water allocation plans for improving reservoir management, ensuring sufficient flow into the delta to reduce salt intrusion, and providing sufficient freshwater for human and industrial consumption under future climate change and socio-economic development. Results show that water availability is becoming more variable throughout the basin due to climate change. River discharge in the dry season is projected to decrease throughout the basin. For a moderate climate change scenario (RCP4.5), low flows reduce between 6 and 48 % depending on locations. For a high climate change scenario (RCP8.5), the decreases of low flows can reach up to 72%. In the wet season, river discharge tends to increase in the middle and lower reaches and decreases in the upper reach of the Pearl River Basin. The variation of river discharge is likely to aggravate water stress. Especially the reduction of low flow is problematic as already the basin experiences water shortages during the dry season in the delta. The model frameworks developed in this study not only evaluate the performance of existing water allocation plans in the past, but also the impact of future climate change on robustness of previous and newly generated water allocation plans. The performance of the four existing water allocation plans reduces under climate change. New water allocation plans generated by the two model frameworks perform much better than the existing plans. Optimising water allocation using carefully selected state-of-the-art multi-objective evolutionary algorithms in the Pearl River Basin can help limit water shortage and salt intrusion in the delta region. However, the current water allocation system with six key reservoirs is insufficient in maintaining the required minimum discharge at two selected gauge stations under future climate change. More reservoirs, especially in the middle and lower reaches of the Pearl River, could potentially improve the future low flow into the delta. This study also explored future water shortage in the Pearl River Basin under different water availability and water use scenarios. Four different strategies to allocate water were defined. These water allocation strategies prioritize upstream water use, Pearl River Delta water use, irrigation wa...