Global biodiversity priorities are primarily addressed through the establishment or expansion of conservation areas (CAs). Spatial prioritization of these CAs can help minimize biodiversity loss by accounting for the uneven distribution of biodiversity and conservation considerations (e.g., accessibility, cost, and biodiversity threats). Furthermore, optimized spatial priorities can help facilitate the judicious use of limited conservation resources by identifying cost effective CA designs. Here, we demonstrate how key species and ecosystems can be incorporated into systematic conservation planning to propose the expansion and addition of new CAs in the biodiversity-unique and data-poor region of Qinghai Plateau, China. We combined species distribution models with a systematic conservation planning tool, MARXAN to identify CAs for biodiversity on Qinghai Plateau. A set of 57 optimal CAs (273,872 km 2 , 39.3 % of this Province) were required to achieve the defined conservation targets in Qinghai Province. We also identified 29 new CAs (139,216 km 2 , 20% of Qinghai Province) outside the existing nature reserve (NRs) that are necessary to fully achieve the proposed conservation targets. The conservation importance of these 29 new CAs was also indicated, with 10 labeled as high priority, 11 as medium priority, and 8 as low priority. High priority areas were more abundant in the eastern and southeastern parts of this region. Our results
RESEARCH ARTICLE
Launched to accelerate biodiversity conservation
A peer-reviewed open-access journalRenqiang Li et al. / Nature Conservation 24: 1-20 (2018) 2 suggest that many species remain inadequately protected within the Qinghai Plateau, with conservation gaps in eastern and northwestern regions. The proposed more representative and effective CAs can provide useful information for adjusting the existing NRs and developing the first National Park in China.