Aim. The purpose of this study was to explore the effect of a novel identified peptide hormone “metabolitin” on lipid absorption in the small intestine of mice with type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD) and potential mechanisms. Methods. T2DM was induced in mice by 4–6 weeks of high-fat diets followed by intraperitoneal injection of 35 mg/kg STZ. NAFLD was induced in diabetic mice by a month of high-fat diets. Oral administration of 4 pmol/g or 12 pmol/g metabolitin every two days was performed during one-month high-fat diets. Triglyceride (TG) and total cholesterol (TC) detection and Oil Red O staining were performed to evaluate lipid absorption. The neurotensin (NT) levels in the intestinal tissues and serum were determined by ELISA. Lipogenesis- and lipolysis-related proteins, AMP-activated protein kinase (AMPK), and p-AMPK were examined by Western blot analysis. Results. It was found that glucose tolerance test (GTT), insulin tolerance test (ITT), TG, and TC indicated lower levels in the serum of NAFLD/T2DM mice receiving 4 pmol/g and 12 pmol/g metabolitin compared to the mice receiving normal saline (
P
<
0.05
). No significant difference was noted in the TC level of the feces among mice with different diets (
P
>
0.05
), but compared to NAFLD/T2DM mice with normal saline, the mice administrated with 4 pmol/g and 12 pmol/g metabolitin revealed much higher TG levels in the feces (
P
<
0.05
). The results of Oil Red O staining revealed that the intestinal epithelial cells of NAFLD/T2DM mice receiving 12 pmol/g metabolitin indicated resistance to lipid absorption and the area of staining was smaller than that of NAFLD/T2DM mice with normal saline (
P
<
0.05
). The NAFLD/T2DM mice receiving 4 pmol/g and 12 pmol/g metabolitin showed a higher extent of p-AMPK concomitant with lower levels of NT in the serum and small intestine than the mice with normal saline (
P
<
0.05
). Western blot analysis also suggested that NAFLD/T2DM mice receiving 4 pmol/g and 12 pmol/g metabolitin revealed lower expressions in fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), stearoyl-CoA desaturase-1 (SCD-1), and sterol regulatory element-binding transcription factor-1 (SREBP1) proteins and higher expressions in carnitine palmitoyltransferase 1 (CPT1), peroxisome proliferator-activated receptor alpha (PPARα), and fatty acid translocase (CD36) proteins than NAFLD/T2DM mice with normal saline (
P
<
0.05
). Conclusion. According to the data we observed, oral administration of metabolitin could attenuate lipid absorption in the small intestine of NAFLD/T2DM mice, which may be a novel therapeutic approach for NAFLD/T2DM.